[发明专利]一种人脸识别方法及系统有效

专利信息
申请号: 201410003346.7 申请日: 2014-01-03
公开(公告)号: CN103679162B 公开(公告)日: 2017-07-14
发明(设计)人: 张莉;丁春涛;严晨;王邦军;何书萍;杨季文;李凡长 申请(专利权)人: 苏州大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 北京集佳知识产权代理有限公司11227 代理人: 常亮
地址: 215123 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 识别 方法 系统
【说明书】:

技术领域

发明涉及人脸识别领域,特别涉及一种人脸识别方法及系统。

背景技术

人脸识别技术是一种重要的生物特征识别技术,在公共安全、信息安全等领域具有广阔的应用前景。

在人脸识别技术中,通常利用K-最近邻分类器对人脸图像进行分类,需要计算每一个待分类的样本到其他全体已知样本的距离,从而求出待分类样本的K个最近邻点,由于真实世界的图像数据的维度较高,因此计算量特别大,使得运算速度特别慢。

为了提高运算速度,现有技术中,通常采用判别近邻嵌入算法将人脸图像数据映射到低维空间,来减小K-最近邻分类器的计算量,但是,判别近邻嵌入算法只构建一个邻接图,且所构建的邻接图只是标识出每个训练样本与其近邻样本之间的类别关系,并没有区分出该训练样本与其近邻样本之间的实际距离,因此,所构建的邻接图不能真实反映出训练样本集的局部结构,导致对待测样本进行分类的分类性能较差。

发明内容

为解决上述技术问题,本申请实施例提供一种人脸识别方法及系统,以达到提高对待测样本进行分类的分类性能的目的,技术方案如下:

一种人脸识别方法,包括:

对预存储的原始训练样本集中的各个训练样本进行降维;

通过降维后的各个训练样本的标签类别,确定降维后的各个训练样本的同类近邻集合和异类近邻集合,其中降维后的各个训练样本的标签类别与降维前的标签类别相同;

根据所述同类近邻集合,确定互为近邻的同类样本之间的实际距离,并构建类内邻接图;

根据所述异类近邻集合,确定互为近邻的异类样本之间的实际距离,并构建类间邻接图;

根据所述类内邻接图、所述类间邻接图和降维后的各个训练样本,确定最佳目标维数和投影变换矩阵;

将降维后的各个训练样本按照所述投影变换矩阵变换到判别子空间中,并将所述最佳目标维数作为所述判别子空间的训练样本集的维数;

利用所述投影变换矩阵,将待测样本映射到所述判别子空间中,得到测试样本;

利用最近邻分类模块,对所述测试样本进行分类。

优选的,所述原始训练样本集由表征,yi是xi的类别标签,c表示类别数,N表示训练样本的总个数,D表示训练样本的维数;

降维后的训练样本组成的训练样本集由表征,所述d为训练样本降维后的维数;

所述类内邻接图具体为:

其中,所述Fw为类内邻接图,和分别表示样本和的同类近邻集合,且与类别相同,d(i,j)为样本和样本的距离,t>0是一个常数,所述用于表示类别相同的所述和所述互为近邻;

所述类间邻接图具体为:

其中,和分别表示样本和的异类近邻集合,且与类别不相同,用于表示类别不相同的所述和所述互为近邻。

优选的,根据所述类内邻接图、所述类间邻接图和降维后的各个训练样本,确定最佳目标维数和投影变换矩阵的过程,包括:

对进行特征分解,获得特征值λi及其对应的特征矢量Pi,i=1,…,d,其中是由降维后的训练样本组成的训练样本矩阵,S=Db-Fb-Dw+Fw,Dw是一个对角矩阵,且对角线上的元素为Db是一个对角矩阵,且对角线上的元素为

把特征值λi按照从大到小的顺序排列,即λ1≥λ2≥…≥λd,则将所有正特征值的个数确定为所述目标维数r,将投影变换矩阵确定为P=[P1,…,Pr]。

优选的,所述将降维后的各个训练样本按照所述投影变换矩阵变换到判别子空间中,并将所述最佳目标维数作为所述判别子空间的训练样本集的维数,包括:

将所述降维后的训练样本按照投影变换矩阵P进行变换,获得所述训练样本在判断子空间中的表示

确定所述判别子空间的训练集为

优选的,所述利用所述投影变换矩阵,将待测样本映射到所述判别子空间中,得到测试样本,包括:

将待测样本x进行降维,变为

利用所述投影变换矩阵P,将降维后的待测样本变换到所述判别子空间中,得到所述判别子空间中的测试样本

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410003346.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top