[发明专利]一种基于多尺度协方差描述子与局部敏感黎曼核稀疏分类的三维人脸识别方法有效

专利信息
申请号: 201711024463.1 申请日: 2017-10-27
公开(公告)号: CN107748871B 公开(公告)日: 2021-04-06
发明(设计)人: 达飞鹏;邓星 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 王安琪
地址: 210088 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 尺度 协方差 描述 局部 敏感 黎曼 稀疏 分类 三维 识别 方法
【说明书】:

发明公开了一种基于多尺度协方差描述子与局部敏感黎曼核稀疏分类的三维人脸识别方法,包括如下步骤:分别对原始的G个库集人脸模型和P个测试集人脸模型进行自动预处理;根据步骤(1)自动预处理之后的库集人脸模型和测试集人脸模型建立尺度空间并进行多尺度关键点检测及其邻域提取;对每个尺度下的每个关键点邻域提取d×d维的局部协方差描述子,并对这些局部协方差描述子进行多尺度融合构建多尺度协方差描述子;映射局部协方差描述子到可再生希尔伯特空间,提出局部敏感黎曼核稀疏表示对三维人脸进行分类识别。本发明能有效提高单一尺度局部协方差描述子的表述能力,同时局部敏感黎曼核稀疏分类可有效地利用多尺度描述子的局部性。

技术领域

本发明涉及数字图像处理和模式识别领域,尤其是一种基于多尺度协方差描述子与局部敏感黎曼核稀疏分类的三维人脸识别方法。

背景技术

与二维图像不同,三维人脸扫描仪获取的三维人脸数据,能有效地包含人脸固有的空间几何信息。由于三维形状数据对光照、视图的变化鲁棒,并且不像二维数据其像素值易受化妆等影响,这些特点为个体身份的准确认定提供了客观依据。随着时代的演变,人体测量技术的发展以及计算能力的增强,极大地促进了人脸识别方法从纯粹以二维图像为基础的方法向使用人脸空间形状信息的三维人脸识别方法转移。近些年来,包含几何信息的三维人脸识别已经成为研究和应用的热点,尤其是人脸识别大挑战计划(FaceRecognition Grand Challenge,FRGC)的实施,极大地推动了国内外对三维人脸识别的研究。

但是人脸曲面随着年龄的增长、表情变化而发生变化,并且在实际应用中,复杂背景与传感器噪声等问题使得单一尺度的局部协方差描述子难以准确描述人脸的局部特征。通过连续变化的尺度参数获得不同尺度下的视觉处理信息,并整合相关信息,有利于深入地挖掘本质特征,故使用多个尺度融合下的人脸特征进行识别有利于提高人脸特征对尺度变化的鲁棒性。另一方面,将局部协方差描述子构成的空间映射到高维的可再生希尔伯特(Hilbert)空间,能解决协方差矩阵的稀疏表示问题。同时局部性比稀疏性更能从本质上反映空间特性。

发明内容

本发明所要解决的技术问题在于,提供一种基于多尺度协方差描述子与局部敏感黎曼核稀疏分类的三维人脸识别方法,利用连续变化的尺度参数获得不同尺度下的局部协方差描述子,能有效提高单一尺度局部协方差描述子的表述能力,同时局部敏感黎曼核稀疏分类可有效地利用多尺度描述子的局部性。

为解决上述技术问题,本发明提供一种基于多尺度协方差描述子与局部敏感黎曼核稀疏分类的三维人脸识别方法,包括如下步骤:

(1)分别对原始的G个库集人脸模型和P个测试集人脸模型进行自动预处理,用来改善三维数据的质量;

(2)根据步骤(1)自动预处理之后的库集人脸模型和测试集人脸模型建立尺度空间并进行多尺度关键点检测及其邻域提取;

(3)对每个尺度下的每个关键点邻域提取d×d维的局部协方差描述子,并对这些局部协方差描述子进行多尺度融合构建多尺度协方差描述子,d为所提取的特征向量的维数;

(4)映射局部协方差描述子到可再生希尔伯特空间,提出局部敏感黎曼核稀疏表示对三维人脸进行分类识别。

优选的,步骤(1)中,分别对原始的G个库集人脸模型和P个测试集人脸模型进行自动预处理具体包括如下步骤:

(11)对人脸中的一些小孔洞采用其临近三维点云坐标(x,y,z)的有效邻域通过双三次插值进行填补;

(12)人脸切割,根据形状指数,特征和几何约束确定鼻尖点位置,点的形状指数描述符通过其最大曲率和最小曲率计算,表示为

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711024463.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top