[发明专利]一种轴向振动环境下缠绕式液压胶管沿程压力损失计算方法有效
申请号: | 201810985271.5 | 申请日: | 2018-09-12 |
公开(公告)号: | CN109241602B | 公开(公告)日: | 2023-05-16 |
发明(设计)人: | 杨忠炯;李俊;周立强;蔡岳林;张高峰 | 申请(专利权)人: | 中南大学 |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/28;G06F113/14;G06F119/14 |
代理公司: | 长沙程思专利代理事务所(普通合伙) 43279 | 代理人: | 郭敏 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 轴向 振动 环境 缠绕 液压 胶管 压力 损失 计算方法 | ||
1.一种轴向振动环境下缠绕式液压胶管沿程压力损失计算方法,其特征在于包括以下过程:
第一步:通过缠绕式液压胶管的实物模型建立其结构模型,根据结构模型计算其各项工程常数,再根据充液管道的流固耦合理论和受迫振动理论建立缠绕式液压胶管轴向振动的流固耦合模型;
第二步:判断轴向振动环境下缠绕式液压胶管内流体的流动状态及摩阻系数的计算,进而推导出胶管轴向振动的沿程损失数值计算公式,最后进行仿真计算;
建立缠绕式液压胶管轴向振动的流固耦合模型包括以下步骤:
(1)建立缠绕式液压胶管结构模型,缠绕式胶管是由内胶层、钢丝增强层、外胶层复合而成,首先对缠绕式液压胶管的钢丝层增强层进行分析,取其单层板的厚度为钢丝的直径d,两钢丝中心距为b,首先对单层板进行分析,设缠绕方向为T,面内垂直于钢丝方向为L,单层板的法线方向为r,根据复合材料串并联得到单层板的工程常量为:
式中:ET—单层板T方向的弹性模量,Pa;EL—单层板L方向的弹性模量,Pa;Er—单层板r方向的弹性模量,Pa;μTr—单层板Tr面的泊松比;μrL—单层板rL面的泊松比;μTL—单层板TL面的泊松比;GTr—单层板Tr面的剪切模量,Pa;GrL—单层板rL面的剪切模量,Pa;GTL—单层板TL面的剪切模量,Pa;Es—钢丝的弹性模量,Pa;Eru—橡胶的弹性模量,Pa;μs—钢丝的泊松比;μru—橡胶的泊松比;Gs—钢丝的剪切模量,Pa;Gru—橡胶的剪切模量,Pa;
由此可知单层板的柔度矩阵为:
其中:
通过对柔度矩阵求逆,得到单层板刚度矩阵[Q]d即:
[Q]d=[S]d-1 (3)
由于实际缠绕式液压胶管的受力是沿胶管轴向和径向,对(3)进行坐标转化,转化为柱坐标系下的偏轴刚度矩阵为:
[Q]k=[Tij]σ[Q]d[Tij]σT (4)
其中:
奇数层,k=2n+1,取β=α,偶数层,k=2n,β=-α,α为钢丝的缠绕角;
由于缠绕式液压胶管内外层材料特性与复合层材料特性差异较大;经典的层合板理论不适用于缠绕式液压胶管整体弹性特性的推导,应用P.C.Chou多层板宏观模量分析,具体过程如下:
①液压胶管的内外层橡胶为各向同性材料,由橡胶的工程常数可知柔度矩阵Sm为:
根据柔度矩阵可以得知其刚度矩阵为:Qm=S-1m
②根据缠绕式液压胶管单层板偏轴刚度矩阵Q1~Qn+2,n为液压胶管的复合层层数以及令内外层橡胶刚度矩阵为Qn+1即Qm、Qn+2即Qm,各层的体积比Vk,k=1~n+2;求得缠绕式液压胶管的整体刚度矩阵,其刚度系数为:
其中:
通过刚度矩阵求逆,得到柔度矩阵,得到缠绕式液压胶管的轴向的弹性常数:
其中:Ez为胶管轴向弹性模量;Vz为胶管轴向泊松比;Gz为胶管轴向剪切模量,
(2)建立胶管轴向振动的流固耦合数学模型,针对轴向基础振动环境下流体与液压胶管互动效应的研究,采用充液管道轴向的流固耦合四方程模型和管路受迫振动响应的理论相结合,通过与四方程模型相同的推导,建立缠绕式液压胶管轴向基础振动的流固耦合四方程模型,四方程模型包括两个关于流体方程和两个关于液压胶管方程如下:
流体的轴向运动方程:
流体的连续方程:
胶管的轴向运动方程:
胶管的应力-位移的关系方程:
其中:
式中:V—胶管内流体的流速,m/s;P—胶管内流体的压力,Pa;uz—胶管的轴向速度,
m/s;σz—胶管的轴向应力,Pa;e—胶管的管壁厚度,m;rj—胶管的内半径;K—流体体积模量,Pa;ρf、ρt—分别为流体密度,Kg/m3,液压胶管密度,Kg/m3;λf—为流体与胶管的稳态摩擦系数;A1为基础振动振幅;f为基础振动频率,g为重力加速度,Vz为胶管轴向泊松比;
(3)建立缠绕式液压胶管轴向振动的流固耦合仿真模型:为了求解缠绕式液压胶管管路中流体的压力和流速及胶管的轴向内应力和速度,采用有限差分法将管路分成n等分,在MATLAB/Simulink中将其表示为向量的形式如下式:
对于流固耦合模型中的用MATLAB/Simulink中的积分模块来表示,在MATLAB/Simulink中用Selector模块对向量进行重新排序,实现将流速的边界条件v0和前n-1个计算单元流速组成新的向量形式如下:
V'=(v0 v1…vn-1)T(13)
可以写成:
同理将流体压力的边界条件P0,液压管路轴向运动速度和轴向应力的边界条件uz0,σz0和其n-1个单元的流体压力,轴向速度和轴向应力组成新的向量P',uz',σz',得到:
根据以上等效形式和流固耦合方程中各个表达式前的系数就能建立基础振动液压胶管的轴向流固耦合的MATLAB/Simulink的仿真模型;
判断轴向振动环境下胶管内流体的流动状态及摩阻系数的计算方法包括以下步骤:
(1)根据相似理论,用雷诺数Re的大小判断流体的流动状态,雷诺数的基本表达式如下:
式中:ρ—流体的密度,Kg/m3;v相—流体相对管道的运动速度,m/s;Lt—雷诺数的特性尺寸,m;μ—流体动力粘度,N·s/m2;
考虑轴向基础振动和流固耦合作用,胶管有轴向运动速度,那么管内流体与胶管相对运动速度必须要改变,得到轴向基础振动环境下胶管内流体的雷诺数表达式如下:
式中:v相=V-uz;dj—胶管内径;
以圆形管道下临界点的雷诺数为2300来判断流体的流动状态即:
①当Re2300,流体的流动状态为层流;
②当Re2300,流体的流动状态为紊流;
但是TBM的工况比较复杂,胶管内流体的外界环境是强振动环境,那必须对雷诺的临界雷诺数进行修正,在工程上一般临界雷诺数取2000,即振动环境下胶管内的流体的流态更容易改变;
(2)摩阻系数的计算要根据胶管内流体的雷诺数来确定,摩阻系数的隐性表达式如下:
其表达式可知摩阻系数与流体的流动状态有关,计算流体摩阻系数时要根据其流动状态分类讨论具体如下:
①当Re2000时,流体流动状态为层流时,摩阻系数的理论值如下:
但是胶管在TBM中工况比较复杂,工程上摩阻系数一般取:
②当2000<Re<4000时,此时被定义为过渡区,不同粗糙度圆管的摩阻系数变化很小,在实际应用意义不大;
③当时,式中Δ为圆管的绝对粗糙度,此时被定义为紊流光滑区,从尼古拉兹的实验中看出此区域的摩阻系数是与圆管的粗糙程度无关的量只与雷诺数相关,根据理论推导和实验数据总结出半经验半理论的公式如下:
(a)当4000<Re≤105时,摩阻系数用布拉休斯公式计算:
(b)当105<Re<3×106时,摩阻系数用尼古拉兹公式计算:
④当时,此时被定义为紊流过渡区,当此区域流体的雷诺数增加时,接近壁面的层流厚度会变薄,逐渐向紊流粗糙区过渡,此区域为紊流光滑区向粗糙区的过渡区域,其摩阻系数既与雷诺数有关又与圆管的粗糙度有关,该区摩阻系数计算的常用公式如下:
(a)米塞斯-兰格公式:
式中Δ'—与管壁的平均的不平整性长度呈正比,但不等同于管壁的绝对粗糙度;
(b)阔尔布鲁克公式:
④当时,此时被定义为紊流粗糙区,此时的流体随着雷诺数的增加偏离了光滑区,此区域的摩阻系数只与圆管的粗糙有关系,该区摩阻系数应用式(25)式计算,或者用尼古拉兹阻力平方区公式计算:
2.如权利要求1所述的轴向振动环境下缠绕式液压胶管沿程压力损失计算方法,其特征在于胶管轴向振动的沿程损失数值计算公式如下:
由于胶管在强振动工作环境下,考虑流固耦合作用时管内流体整体流动情况比较复杂,对整个管道进行分段处理的数值分析方法,基础振动液压胶管的轴向流固耦合的MATLAB/Simulink的仿真模型和圆管道沿程损失的计算公式推导出轴向振动环境下液压胶管的沿程损失数值计算公式如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810985271.5/1.html,转载请声明来源钻瓜专利网。