[发明专利]检测内源性H2 有效
申请号: | 201910862438.3 | 申请日: | 2019-09-12 |
公开(公告)号: | CN110554074B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 赵媛;柯伟;刘瀚 | 申请(专利权)人: | 江南大学 |
主分类号: | G01N27/26 | 分类号: | G01N27/26;G01N27/30 |
代理公司: | 无锡华源专利商标事务所(普通合伙) 32228 | 代理人: | 聂启新 |
地址: | 214122 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 检测 内源 base sub | ||
1.一种内源性H2S检测的电化学传感器的构建方法,其特征在于,所述构建方法包括如下步骤:
(1)磁性还原氧化石墨烯的合成:
将还原氧化石墨烯加入乙二醇中,混合溶解后加入乙酰丙酮铁,并将混合液超声处理30-40min,随后加入1.4-1.6g的乙酸胺,搅拌30-50min后,将搅拌所得混合液转移到反应釜中,190-210℃反应22-26 h,反应结束后冷却至室温,随后进行固液分离取固相,后用水和乙醇清洗固相,并用水重新将所得固相溶解分散,定容至浓度为2-4mg/mL,制得磁性还原氧化石墨烯溶液,即rGO/Fe3O4溶液;
(2)rGO/Fe3O4/Cu2O溶液的合成:
将步骤(1)中所得rGO/Fe3O4溶液,加入到0.01-0.012g/mL的硝酸铜溶液中,超声处理30-40min,混合均匀,之后边搅拌边加入80-100µL 0.035-0.04mol/L的NaOH溶液,并持续搅拌30-50min,随后加入400-450mL 85-90mol/L的水合肼溶液并搅拌40-50min,随后固液分离取固相,将固相用水洗涤干燥,最后重新分散在水中,即得2-3mg/ml的rGO/Fe3O4/Cu2O溶液;
(3)磁性玻碳电极MGCE预处理:
将直径为4-10mm的 MGCE先后在粉末粒径为0.4-0.6mm和0.025-0.03mm的氧化铝粉上分别进行打磨,然后用乙醇和水清洗打磨后的电极,测裸电极的循环伏安曲线,当氧化峰和还原峰电位差小于90mV时即为打磨结束,之后再用乙醇和水清洗打磨后的电极,将清洗干净的电极用氮气或者氩气吹干待用;
(4)电化学传感器的构建:
取一定量步骤(2)所得的rGO/Fe3O4/Cu2O溶液,加入一系列不同浓度的NaHS溶液和浓度为5-7wt%的氨水,反应一定时间,将反应后的磁性混合纳米材料用磁铁吸附住,去除上清液,从而将磁性混合纳米材料分离出来,并将磁性混合纳米材料重新溶解分散在超纯水中,然后取一定量所得溶液滴涂在步骤(3)中所得电极表面,对所得电极进行电化学扫描,记录信号变化,建立反应后磁性混合纳米材料的电化学信号和NaHS浓度间的标准曲线;
所述磁性混合纳米材料为rGO/Fe3O4/Cu2O与rGO/Fe3O4/Cu2O-Cu9S8纳米材料的混合物。
2.根据权利要求1所述的构建方法,其特征在于,步骤(1)中含有还原氧化石墨烯的乙二醇溶液浓度为1-2w/v%,其中还原氧化石墨烯、乙酰丙酮铁与乙酸胺的质量比为30-60:15-35:100-180。
3.根据权利要求1所述的构建方法,其特征在于,步骤(2)中还原氧化石墨烯分散液、硝酸铜溶液、NaOH溶液与水合肼溶液的体积用量比为0.2-1.2:5-15:0.04-0.16:200-600。
4.根据权利要求1所述的构建方法,其特征在于,步骤(4)中所述电化学扫描的电压范围为-0.5v-0.3v。
5.根据权利要求1所述的构建方法,其特征在于,步骤(4)中所述电化学传感器的构建,具体步骤如下:平行取5-12份20-30µL步骤(2)所得的rGO/Fe3O4/Cu2O溶液置于离心管中,并分别加入100-150µL不同浓度的NaHS溶液,同时加入20-30µL浓度为5-7wt%的氨水,反应50-70min,分别将反应后的磁性混合纳米材料分离出来,取出来以后分别重新分散在20-30µL超纯水中,然后取8-12µL所得分散液滴涂在步骤(3)中所得电极表面,进行电化学扫描,记录信号变化,建立磁性混合纳米材料的电化学信号和NaHS浓度间的标准曲线。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910862438.3/1.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法