[发明专利]纳米级TiO2水合物颗粒-水体系中离子脱除方法无效
申请号: | 03103074.2 | 申请日: | 2003-01-21 |
公开(公告)号: | CN1519200A | 公开(公告)日: | 2004-08-11 |
发明(设计)人: | 何旭敏;夏海平;蓝伟光;陈毓敏;朱亚君;陈鸿博;韩国彬;丁马太 | 申请(专利权)人: | 厦门大学 |
主分类号: | C01G23/053 | 分类号: | C01G23/053;B01D61/00 |
代理公司: | 厦门南强之路专利事务所 | 代理人: | 马应森 |
地址: | 361005福*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 涉及利用超滤膜分离技术对纳米TiO2水合物颗粒体系进行脱盐、分离,包括脱除各种无机离子的方法。步骤为将料液倒人料罐,启动高压泵、旁通阀;调节压力;测量透过液通量、离子活度和电导率;当料液浓缩后,加去离子水套洗,套洗过程中分别取透过液和浓缩液测离子浓度,当浓缩液中杂离子的含量达到TiO2产品质量要求时,套洗结束。能有效地进行纳米TiO2水合物颗粒体系的脱盐,解决了传统方法无法解决的难题。可获得杂离子除尽的纳米TiO2水合物溶液。可以很好地处理传统法无法进行的纳米颗粒水分散体系中离子的脱除;可制备高浓度TiO2纳米粉;不含CL-的TiO2粉具有优异的光催化性能。 | ||
搜索关键词: | 纳米 tio sub 水合物 颗粒 水体 离子 脱除 方法 | ||
【主权项】:
1、纳米级TiO2水合物颗粒-水体系中离子脱除方法,其特征在于工艺步骤如下:1)将料液倒人料罐中,启动高压泵,开启旁通阀;2)调节旁通阀,使膜设备的操作压力处于0.1~0.49MPa;3)每间隔3~15min测量透过液通量,液通量≥80L/m2·h,并取相应时间点的透过液、浓缩液样品,测量其离子活度和电导率;4)当料液浓缩到8%~60%时,至少加去离子水套洗1次,套洗倍数为0.25~1.5,套洗过程中分别取透过液和浓缩液测离子浓度,当浓缩液中杂离子的含量达到TiO2产品质量要求时,套洗结束。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/03103074.2/,转载请声明来源钻瓜专利网。
- 上一篇:硫化镉纳米棒的制备方法
- 下一篇:高纯纳米氧化锆的制备方法
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法