[发明专利]基于局部耦合神经振子网络的简单灰度图像分割方法无效

专利信息
申请号: 200910236276.9 申请日: 2009-10-23
公开(公告)号: CN101814180A 公开(公告)日: 2010-08-25
发明(设计)人: 乔元华;段立娟;孟永;房法明;吴春鹏;苗军 申请(专利权)人: 北京工业大学
主分类号: G06T5/00 分类号: G06T5/00;G06N3/02
代理公司: 北京思海天达知识产权代理有限公司 11203 代理人: 楼艮基
地址: 100124 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于局部耦合神经振子网络的简单灰度图像分割方法,包括:建立视觉图像输入层,建立神经元振子网络振荡层,建立目标之间分离层。视觉图像输入层负责将视觉图像与神经元振子网络振荡层上神经网络中的神经元振子建立一一对应关系;神经元振子网络振荡层负责通过模拟人脑视觉皮层中功能柱对视觉图像处理的功能来对每个神经元振子建立动力学系统模型,使得每个振子产生振荡,并在相邻振子的局部耦合作用下产生同步振荡;目标之间分离层负责根据同步振荡结果通过采取去同步机制实现视觉图像上目标区域之间的分离。本发明分析了神经元振子产生振荡以及同步振荡的参数设置要求,对于认识和理解图像分割具有指导作用和理论意义。
搜索关键词: 基于 局部 耦合 神经 网络 简单 灰度 图像 分割 方法
【主权项】:
一种基于局部耦合神经振子网络的简单灰度图像分割方法,其特征在于包括以下步骤:建立视觉图像输入层,建立神经元振子网络振荡层,建立目标之间分离层;所述的建立视觉图像输入层,将灰度图像归一化,并认为灰度值小于阈值的像素对应的是图像的背景,在振荡过程中背景区域对应的神经元振子保持沉默状态,然后将视觉图像输入到神经元振子网络振荡层上的神经网络中,图像中的像素点与神经网络上的神经元振子存在一一对应关系;所述的建立神经元振子网络振荡层,将这一层上神经网络中的每个振子建立动力学系统模型: dx i dt = - r 1 x i + r 1 H ( ax i - cy i + I i - φ x ) + αΔ x i dy i dt = - r 2 y i + r 2 H ( bx i - dy i - φ y ) + βΔ y i - - - ( 1 ) 用4阶经典龙格-库塔法对(1)式求解,记录求解结果xi(t)、yi(t),求解结果表现为每个振子的兴奋性单元、抑制性单元随时间振荡的曲线;所述的建立目标之间分离层,根据每个振子的兴奋性单元、抑制性单元随时间振荡的曲线,采用最小二乘法将曲线拟合为Fourier曲线,并求出拟合后曲线频率、距离水平轴的平均距离、相位三个特征值;首先按照频率对所有像素进行分类,分类结束后检查每一类对应的图像区域是否是连通的,如果不是连通的将继续依距离水平轴的平均距离、相位的次序进行分类,并在每一次分类结束后检查每一类对应的图像区域是否为连通状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/200910236276.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top