[发明专利]一种弱监督的SAR图像分类方法无效
申请号: | 201010221605.5 | 申请日: | 2010-06-29 |
公开(公告)号: | CN101894275A | 公开(公告)日: | 2010-11-24 |
发明(设计)人: | 杨文;代登信 | 申请(专利权)人: | 武汉大学 |
主分类号: | G06K9/64 | 分类号: | G06K9/64;G06K9/66;G06T9/40 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 张火春 |
地址: | 430072*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种弱监督的SAR图像分类方法,这种技术方案能同时利用图像的数据信息,图像与图像之间的相关性息和图像在多个尺度上的相关信息,因而很好的克服了SAR图像分类中的一些局部不确定性问题。另一封面,该方法可以从少量的弱信息,即从关键词标注的训练数据中学习SAR图像的分类模型,可以大幅度的减少获取精确训练数据的难度。 | ||
搜索关键词: | 一种 监督 sar 图像 分类 方法 | ||
【主权项】:
一种弱监督的SAR图像分类方法,其特征是包括以下步骤:步骤1,分割图像,即先将SAR图像分割成多个子图像,然后将各子图像格网划分成互不重叠的矩形区域;步骤2,建树,即将每个矩形区域采用一个建立在多尺度信息上的局部四叉树描述,局部四叉树的叶子节点为矩形区域中的一个图像块;步骤3,建模,即通过建立分级的马尔科夫主题模型,一个子图像中的所有矩形区域被它们共享的语义模型联系在一起,这些语义模型将子图像作为一个整体来描述其地物分类概率;步骤4,训练与推理,即根据对步骤1中所得的子图像中一部分的预先关键词标注,基于步骤3构建的分级马尔科夫主题模型进行学习训练,然后用训练后所得分级马尔科夫主题模型对剩下的子图像进行语义标注。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201010221605.5/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序