[发明专利]基于BP人工神经网络的农作物害虫发生量的预测方法无效
申请号: | 201110089790.1 | 申请日: | 2011-04-12 |
公开(公告)号: | CN102163301A | 公开(公告)日: | 2011-08-24 |
发明(设计)人: | 彭琳;刘宗田;杨林楠;钟飞;朱平 | 申请(专利权)人: | 上海大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 上海上大专利事务所(普通合伙) 31205 | 代理人: | 陆聪明 |
地址: | 200444*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于BP人工神经网络的农作物害虫发生量的预测方法,其步骤如下:(1)采集待预测农作物害虫发生量的原始数据和影响农作物害虫发生影响因子的原始数据;(2)计算原始数据之间关联度,剔除差异大的数据;(3)计算影响农作物害虫发生的影响因子的累计贡献率;(4)利用BP人工神经网络,对农作物害虫发生量进行预测。该方法利用灰色关联度分析方法对农作物害虫发生量的原始数据进行处理,剔除掉误差数据,保证预测模型的稳定性和准确性;并利用主成分分析方法降低了BP人工神经网络输入因子个数,有效地解决了利用BP人工神经网络进行预测时,输入因子少时,其预测准确性低;输入因子多时,运算量大、其预测结果得不到收敛的矛盾。 | ||
搜索关键词: | 基于 bp 人工 神经网络 农作物 害虫 发生 预测 方法 | ||
【主权项】:
一种基于BP人工神经网络的农作物害虫发生量的预测方法,其特征在于:首先,利用灰色关联分析法对待预测的农作物害虫过去的发生量和影响害虫发生的影响因子的原始数据进行关联度计算,剔除掉差异较大的数据;其次,对灰色关联分析法处理后的数据进行主成分分析,计算影响害虫发生的影响因子的累计贡献率;最后,利用BP人工神经网络对农作物害虫发生量进行预测,得到预测结果,具体步骤如下:(1)、采集整理待预测的农作物害虫过去的发生量的原始数据和影响农作物害虫发生的影响因子的原始数据;(2)、利用灰色关联度分析方法,计算原始数据之间的关联度,剔除差异较大数据;(3)、对灰色关联分析法处理后的数据主成分分析,计算影响农作物害虫发生的影响因子的累计贡献率;(4)、利用BP人工神经网络,对农作物害虫发生量进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海大学,未经上海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110089790.1/,转载请声明来源钻瓜专利网。