[发明专利]基于自回归模型的雷达高分辨距离像目标识别方法有效
申请号: | 201110089912.7 | 申请日: | 2011-04-11 |
公开(公告)号: | CN102184408A | 公开(公告)日: | 2011-09-14 |
发明(设计)人: | 刘宏伟;王鹏辉;戴奉周;杜兰;李彦兵;王英华 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G01S13/02;G01S7/41 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于自回归模型的雷达高分辨距离像目标识别方法,主要解决现有雷达高分辨距离像目标识别技术中训练样本需求量大,识别特征总帧数不能自动确定的问题。其实现过程是:计算高分辨距离像训练样本的频谱幅度信号;对训练样本的频谱幅度信号用自回归模型建模;使用Yule-Walker方程计算自回归模型的系数向量,使用系数向量作为训练样本的识别特征;对训练样本识别特征使用高斯混合模型分帧;用贝叶斯阴阳学习方法自动确定训练样本识别特征的总帧数并估计各帧参数;提取测试样本的自回归系数向量识别特征进行识别,得到识别结果。本发明具有训练样本需求量小,训练样本识别特征总帧数自动确定的优点,可用于对雷达目标的识别。 | ||
搜索关键词: | 基于 回归 模型 雷达 分辨 距离 目标 识别 方法 | ||
【主权项】:
1.一种基于自回归模型的雷达高分辨距离像目标识别方法,包括如下步骤:1)对高分辨距离像训练样本进行傅里叶变换,将其转换到频域,并将频域信号取模值,得到高分辨距离像训练样本对应的频谱幅度信号z=[z(1),z(2),...,z(d)],其中,z(f)是频谱幅度信号z的第f维元素,f=1,2,...,d,d表示频谱幅度信号z的维度;2)设定自回归模型的阶数m,m为正整数,用自回归模型对训练样本的频谱幅度信号z建模为:f=m+1,m+2,....,d,其中z(f)表示训练样本的频谱幅度信号z的第f维元素,z(f-k)表示训练样本的频谱幅度信号z的第f-k维元素,e(f)是训练样本自回归模型的预测误差,a(k)是训练样本自回归模型的第k个自回归系数,k=1,2,...,m,将所有自回归系数用向量形式表示为:a=[a(1),a(2),...,a(m)]作为训练样本的识别特征,式中,a(i)是自回归模型的第i个自回归系数,i=1,2,...,m;3)用Yule-Walker方程估计训练样本的识别特征a;4)用高斯混合模型对训练样本的识别特征a分帧,以克服训练样本识别特征a的姿态敏感性,分帧后的训练样本的识别特征a表示为:其中p(a)表示训练样本识别特征a的概率密度函数,L表示训练样本识别特征a的帧数,αl表示第l帧的先验概率,l=1,2,...,L,G(a|μl,∑l)表示训练样本识别特征a在第l帧内服从高斯分布,μl表示第l帧的均值,∑l表示第l帧的协方差矩阵,l=1,2,...,L;5)用贝叶斯阴阳学习方法自动确定步骤4)中的总帧数L,并估计各帧的先验概率αl,均值μl和协方差矩阵∑l,l=1,2,...,L;6)将步骤5)中估计得到的各帧的先验概率αl,均值μl和协方差矩阵∑l,l=1,2,...,L,存入识别系统模板库,根据该模板库对高分辨距离像测试样本进行识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110089912.7/,转载请声明来源钻瓜专利网。