[发明专利]支座角位移时基于混合监测的识别松弛索的递进式方法有效
申请号: | 201110122641.0 | 申请日: | 2011-05-13 |
公开(公告)号: | CN102288430A | 公开(公告)日: | 2011-12-21 |
发明(设计)人: | 韩玉林;韩佳邑 | 申请(专利权)人: | 东南大学 |
主分类号: | G01M99/00 | 分类号: | G01M99/00;G01B21/22;G01B21/32;G01B21/00;G01L5/00 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 柏尚春 |
地址: | 210096*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 支座角位移时基于混合监测的识别松弛索的递进式方法基于对多类参量的混合监测、通过监测结构支座角坐标,用于识别松弛的支承索时,考虑到了被监测量的当前数值向量同被监测量的初始数值向量、虚拟单位损伤被监测量数值变化矩阵和当前名义虚拟损伤向量间的线性关系是近似的,为克服此缺陷,给出了使用线性关系分段逼近非线性关系的方法,可识别出虚拟受损索,在使用无损检测等方法从中鉴别出真实受损索后,剩下的虚拟受损索就是松弛的支承索,依据松弛程度同虚拟损伤程度间的关系就可确定需调整的索长。 | ||
搜索关键词: | 支座 位移 基于 混合 监测 识别 松弛 递进 方法 | ||
【主权项】:
1.一种支座角位移时基于混合监测的识别松弛索的递进式方法,其特征是该方法包括:a. 设共有N根索,首先确定索的编号规则,按此规则将索结构中所有的索编号,该编号在后续步骤中将用于生成向量和矩阵;b. 确定混合监测时指定的将被监测索力的支承索,设索系统中共有N根索,结构的被监测的索力数据由结构上M1个指定索的M1个索力数据来描述,结构索力的变化就是所有指定索的索力的变化;每次共有M1个索力测量值或计算值来表征结构的索力信息;M1是一个不小于0的整数;确定混合监测时指定的将被监测应变的被测量点,结构的被监测的应变数据可由结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,结构应变数据的变化就是K2个指定点的所有被测应变的变化;每次共有M2个应变测量值或计算值来表征结构应变,M2为K2和L2之积;M2是不小于0的整数;确定混合监测时指定的将被监测角度的被测量点,结构的被监测的角度数据由结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化;每次共有M3个角度坐标分量测量值或计算值来表征结构的角度信息,M3为K3、L3和H3之积;M3是一个不小于0的整数;确定混合监测时指定的将被监测的形状数据,结构的被监测的形状数据由结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,结构形状数据的变化就是K4个指定点的所有坐标分量的变化;每次共有M4个坐标测量值或计算值来表征结构形状,M4为K4和L4之积;M4是一个不小于0的整数;综合上述混合监测的被监测量,整个结构共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K, K为M1、K2、K3和K4之和,K和M不得小于索的数量N;由于M个被监测量是不同类型的,所以称为“支座角位移时基于混合监测的索系统的健康监测方法”;为方便起见,将本步所列出的“混合监测时结构的被监测的所有参量”简称为“被监测量”;c. 利用索的无损检测数据等能够表达索的健康状态的数据建立初始虚拟损伤向量dio,其中i表示循环次数,后面i及上标i都表示循环次数,i=1, 2, 3,……;第一次循环时dio记为d1o;如果没有索的无损检测数据及其他能够表达索的健康状态的数据时,或者可以认为结构初始状态为无松弛、无损伤状态时,向量d1o的各元素数值取0;d. 在建立初始虚拟损伤向量d1o的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量C1o;e. 在建立初始虚拟损伤向量d1o和被监测量的初始数值向量C1o的同时,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;同时,依据结构设计数据、竣工数据得到所有支承索的初始自由长度,组成初始自由长度向量lo;同时,依据结构设计数据、竣工数据或实测得到索结构的初始几何数据;同时,实测或根据结构设计、竣工资料得到所有索的弹性模量、密度、初始横截面面积;f. 建立索结构的初始力学计算基准模型Ao,建立初始索结构支座角坐标向量Uo,建立第一次循环开始时需要的索结构的力学计算基准模型A1;依据索结构竣工之时的索结构的实测数据,该实测数据包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构支座角坐标数据、索结构模态数据、所有索的弹性模量、密度、初始横截面面积等实测数据,以及索的无损检测数据等能够表达索的健康状态的数据,依据设计图和竣工图,利用力学方法建立索结构的初始力学计算基准模型Ao;如果没有索结构竣工之时的结构的实测数据,那么就在建立健康监测系统前对该索结构进行实测,同样得到索结构的实测数据,根据此数据和索结构的设计图、竣工图,同样利用力学方法建立索结构的初始力学计算基准模型Ao;不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的索结构支座角坐标数据组成初始索结构支座角坐标向量Uo;Ao和Uo是不变的,只在第一次循环开始时建立;第i次循环开始时建立的索结构的力学计算基准模型记为Ai,其中i表示循环次数;即第i次循环;因此第一次循环开始时建立的索结构的力学计算基准模型记为A1, A1就等于Ao;为叙述方便,命名“索结构当前力学计算基准模型Atio”,在每一次循环中Atio根据需要会不断更新,每一次循环开始时,Atio等于Ai;同样为叙述方便,命名“索结构实测支座角坐标向量Uti”,在每一次循环中,不断实测获得索结构支座角坐标当前数据,所有索结构支座角坐标当前数据组成当前索结构实测支座角坐标向量Uti,向量Uti的元素与向量Uo相同位置的元素表示相同支座的相同方向的角坐标;为叙述方便起见,对于第i次循环,将上一次更新Atio时的索结构支座角坐标当前数据记为当前索结构支座角坐标向量Utio;第一次循环开始时,At1o等于A1,Ut1o等于Uo;A1对应的索的健康状态由d1o描述;力学计算基准模型Ai对应的索的健康状态由dio描述;g. 每一次循环开始时,令Atio等于Ai;实测获得索结构支座角坐标当前数据,所有索结构支座角坐标当前数据组成当前索结构实测支座角坐标向量Uti,根据当前索结构实测支座角坐标向量Uti,在必要时更新索结构当前力学计算基准模型Atio和当前索结构支座角坐标向量Utio;h. 在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,通过计算获得索结构虚拟单位损伤被监测量数值变化矩阵ΔCi和名义虚拟单位损伤向量Diu; i. 实测得到索结构的所有支承索的当前索力,组成当前索力向量Fi;同时,实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量Ci”。实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离;给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前和之后出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;j. 定义待求的当前名义虚拟损伤向量dic和当前实际虚拟损伤向量di。损伤向量dio、dic和d i的元素个数等于索的数量,损伤向量的元素和索之间是一一对应关系,损伤向量的元素数值代表对应索的虚拟损伤程度或健康状态;k. 依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Cio”、“虚拟单位损伤被监测量数值变化矩阵ΔCi”和“当前名义虚拟损伤向量dic”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除dic外的其它量均为已知,求解式1就可以算出当前名义虚拟损伤向量dic;
式1l. 利用式2表达的当前实际虚拟损伤向量di的元素dij同初始虚拟损伤向量dio的元素dioj和当前名义虚拟损伤向量dic的元素dicj间的关系,计算得到当前实际虚拟损伤向量di的所有元素;
式2式2中j=1,2,3,……,N。由于当前实际虚拟损伤向量d i的元素数值代表对应索的当前实际虚拟损伤程度,即实际松弛程度或实际损伤程度,当前实际虚拟损伤向量d i中数值不为0的元素对应的支承索就是有问题的支承索,有问题的支承索可能是松弛索、也可能是受损索,其数值反应了松弛或损伤的程度;m. 从第l步中识别出的有问题的支承索中鉴别出受损索,剩下的就是松弛索;n. 利用在第l步获得的当前实际虚拟损伤向量di得到松弛索的当前实际虚拟损伤程度,利用在第i步获得的当前索力向量Fi,利用在第i步获得的所有支承索的两个支承端点的空间坐标,利用在第e步获得的初始自由长度向量lo,利用在第e步获得的所有索的弹性模量、密度、初始横截面面积数据,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际虚拟损伤程度等效的松弛程度,等效的力学条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同。满足上述两个等效条件时,这样的两根支承索在结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;计算时所需索力由当前索力向量Fi对应元素给出;o. 在求得当前名义虚拟损伤向量dic后,按照式3建立标识向量Bi,式4给出了标识向量Bi的第j个元素的定义;
式3
式4式3、式4中元素Bij是标识向量Bi的第j个元素,Diuj是名义虚拟单位损伤向量Diu的第j个元素,dicj是当前名义虚拟损伤向量dic的第j个元素,它们都表示第j根索的相关信息。式4中j=1, 2, 3,……,N;p.如果标识向量Bi的元素全为0,则回到第g步继续本次循环;如果标识向量Bi的元素不全为0,则进入下一步、即第q步;q. 根据式5计算得到下一次、即第i+1次循环所需的初始虚拟损伤向量di+1o的每一个元素di+1oj;
式5式5中Diuj是第i次循环名义虚拟单位损伤向量Diu的第j个元素,dicj是第i次循环当前名义虚拟损伤向量d ic的第j个元素,Bij是第i次循环标识向量Bi的第j个元素。式5中j=1, 2, 3,……,N;r. 在索结构当前力学计算基准模型Atio的基础上,令索的健康状况为di+1o后更新得到下一次、即第i+1次循环所需的力学计算基准模型Ai+1;s. 通过对力学计算基准模型Ai+1的计算得到对应于模型Ai+1的结构的所有被监测量的数值,这些数值组成下一次、即第i+1次循环所需的被监测量的初始数值向量Ci+1o;t. 建立下一次、即第i+1次循环所需的索结构当前力学计算基准模型Ati+1o,即取Ati+1o等于Ai+1; u. 建立下一次、即第i+1次循环所需的当前索结构支座角坐标向量Uti+1o,即取Uti+1o等于Utio;v. 回到步骤g,开始下一次循环。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110122641.0/,转载请声明来源钻瓜专利网。