[发明专利]基于目标跟踪的计算机辅助胃癌诊断方法有效
申请号: | 201110356082.X | 申请日: | 2011-11-10 |
公开(公告)号: | CN102436551A | 公开(公告)日: | 2012-05-02 |
发明(设计)人: | 王爽;焦李成;高婷婷;公茂果;周治国;刘芳 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 田文英;王品华 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于目标跟踪的计算机辅助胃癌诊断方法,主要解决医学影像领域中胃癌诊断过程中存在的淋巴结转移判定问题问题。其实现步骤为:(1)分割图像;(2)提取被跟踪目标;(3)预测跟踪;(4)判断是否全部目标预测跟踪完毕,如果全部目标预测跟踪完毕,则进行下一步骤;否则,返回步骤(3);(5)特征匹配;(6)淋巴结识别。本发明是将计算机辅助医学诊断的方法用于胃癌淋巴结转移的检测,可以在很短的时间内处理大量胃部切片图,较之传统的胃癌淋巴结转移的检测提高了检测速率和正确率,实现胃部切片图淋巴结的自动识别,极大的缩短临床诊断时间,为患者争取更好的治疗时机。 | ||
搜索关键词: | 基于 目标 跟踪 计算机辅助 胃癌 诊断 方法 | ||
【主权项】:
一种基于目标跟踪的计算机辅助胃癌诊断方法,其具体实现步骤如下:(1)分割图像1a)采用KSVD字典学习的方法提取胃壁周围感兴趣区域;1b)运用字典学习的稀疏表示方法检测每帧切片图中的目标;(2)提取被跟踪目标2a)采用四邻域连通标记算法,对所有待跟踪的胃部切片图像中的目标区域依次进行中心标记;2b)提取每个目标区域中心标记,得到每个目标的中心位置,将每一帧中所有目标的中心位置确定为被跟踪目标的中心位置(3)预测跟踪3a)按照中心标记的先后顺序依次从切片图中提取被跟踪目标;3b)采用卡尔曼预测方法,对被跟踪目标进行预测,得到该目标在下一帧胃部切片图像的预测坐标点,如果预测坐标点在下一帧切片图某个区域的内部,则将此区域目标的坐标作为被跟踪目标在下一帧切片图中的坐标,记录到目标轨迹段中;如果预测坐标点不在下一帧切片图某个区域的内部,则返回步骤3a);(4)判断是否全部目标预测跟踪完毕,如果全部目标预测跟踪完毕,则进行下一步骤;否则,返回步骤(3);(5)特征匹配5a)将记录的每个目标轨迹段中的起始和终止坐标分别存于起始坐标集合和终止坐标集合中;5b)将被跟踪目标在当前胃部切片序列图像中的坐标作为中心,在下一帧胃部切片序列图像中建立一个矩形区域,将该矩阵区域作为被跟踪目标的邻域匹配区域;将当前胃部切片序列图像中轨迹终止坐标代表的目标作为待匹配目标;5c)利用相似度计算公式计算被跟踪目标与每个待匹配目标的相似度,将相似度最大的待匹配目标与被跟踪目标确定为同一个目标,再将其跟踪轨迹连接到被跟踪目标的跟踪轨迹后;5d)重复执行步骤5a)、步骤5b)、步骤5c),直到最后一帧图像,完成对所有目 标的特征匹配,将属于同一目标的跟踪轨迹,按顺序连接,形成完整的跟踪轨迹;(6)淋巴结识别6a)依次对每个目标轨迹中目标前后帧面积差求其平均值,如果平均值大于10,则将此目标标记为候选淋巴结,若小于5,则标记为候选血管,其余判定为杂点目标;6b)对候选淋巴结依次计算其跟踪轨迹段中心的前后帧欧氏距离,计算每个目标中心欧氏距离的平均值,如果平均值小于3,则判定为淋巴,否则,判定为血管;6c)对候选血管目标查看其对应的跟踪轨迹,如果其出现的帧数大于10帧则判定为血管,否则,判定为杂点。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110356082.X/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用