[发明专利]一种基于人工神经网络的二次电池表面最高温度预测方法有效

专利信息
申请号: 201110359931.7 申请日: 2011-11-14
公开(公告)号: CN102494778A 公开(公告)日: 2012-06-13
发明(设计)人: 穆道斌;方凯正;吴锋;陈实;吴伯荣;宋亮;林静 申请(专利权)人: 北京理工大学
主分类号: G01J5/00 分类号: G01J5/00;G06N3/02
代理公司: 暂无信息 代理人: 暂无信息
地址: 100081 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于人工神经网络的二次电池表面最高温度预测方法,属于电池热管理系统技术领域。将二次电池置于高低温试验箱内,连接上充放电试验机;电池放电后进行充电;监测电池在充电过程中表面最高温度的变化情况;通过设定Back-Propagation神经网络模型的输入、输出、神经元个数、层数、传递函数和训练算法来完成模型的构建;将数据用于模型训练,使模型能够运用于预测;电池在其他环境温度下充电过程中的表面最高温度通过模型进行预测。本发明的模型应用起来简单易行,参数容易控制,结果具有实用价值;电池在不同环境温度下工作时的表面最高温度得以预测,为电池热管理系统的有效工作和电池的安全提供了保证。
搜索关键词: 一种 基于 人工 神经网络 二次 电池 表面 最高温度 预测 方法
【主权项】:
一种基于人工神经网络的二次电池表面最高温度预测方法,其特征在于具体步骤如下:1)将二次电池置于高低温试验箱内,连接上充放电试验机;高低温试验箱的温度为‑10℃~40℃;2)将步骤1)中的电池放电至SOC为0,然后进行充电至SOC为0.1~1.2;3)应用红外热成像仪监测电池在充电过程中表面最高温度的变化情况;4)通过设定Back‑Propagation神经网络模型的输入、输出、神经元个数、层数、层间的传递函数和训练算法来完成模型的构建;5)将步骤3)得到的数据用于模型训练,使模型能够运用于预测;6)电池在其他环境温度下充电过程中的表面最高温度,通过步骤5)中训练好的模型进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201110359931.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top