[发明专利]一种基于人工神经网络的二次电池表面最高温度预测方法有效
申请号: | 201110359931.7 | 申请日: | 2011-11-14 |
公开(公告)号: | CN102494778A | 公开(公告)日: | 2012-06-13 |
发明(设计)人: | 穆道斌;方凯正;吴锋;陈实;吴伯荣;宋亮;林静 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G01J5/00 | 分类号: | G01J5/00;G06N3/02 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于人工神经网络的二次电池表面最高温度预测方法,属于电池热管理系统技术领域。将二次电池置于高低温试验箱内,连接上充放电试验机;电池放电后进行充电;监测电池在充电过程中表面最高温度的变化情况;通过设定Back-Propagation神经网络模型的输入、输出、神经元个数、层数、传递函数和训练算法来完成模型的构建;将数据用于模型训练,使模型能够运用于预测;电池在其他环境温度下充电过程中的表面最高温度通过模型进行预测。本发明的模型应用起来简单易行,参数容易控制,结果具有实用价值;电池在不同环境温度下工作时的表面最高温度得以预测,为电池热管理系统的有效工作和电池的安全提供了保证。 | ||
搜索关键词: | 一种 基于 人工 神经网络 二次 电池 表面 最高温度 预测 方法 | ||
【主权项】:
一种基于人工神经网络的二次电池表面最高温度预测方法,其特征在于具体步骤如下:1)将二次电池置于高低温试验箱内,连接上充放电试验机;高低温试验箱的温度为‑10℃~40℃;2)将步骤1)中的电池放电至SOC为0,然后进行充电至SOC为0.1~1.2;3)应用红外热成像仪监测电池在充电过程中表面最高温度的变化情况;4)通过设定Back‑Propagation神经网络模型的输入、输出、神经元个数、层数、层间的传递函数和训练算法来完成模型的构建;5)将步骤3)得到的数据用于模型训练,使模型能够运用于预测;6)电池在其他环境温度下充电过程中的表面最高温度,通过步骤5)中训练好的模型进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110359931.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种数据预取方法及装置
- 下一篇:一种用于数控机械的自动伸缩刀架装置