[发明专利]一种基于最近特征线流形学习的人脸图像超分辨率方法有效
申请号: | 201110421817.2 | 申请日: | 2011-12-16 |
公开(公告)号: | CN102402784A | 公开(公告)日: | 2012-04-04 |
发明(设计)人: | 胡瑞敏;江俊君;王冰;韩镇;卢涛;黄克斌;冷清明 | 申请(专利权)人: | 武汉大学 |
主分类号: | G06T5/50 | 分类号: | G06T5/50 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 薛玲 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于最近特征线流形学习的人脸图像超分辨率方法,把人脸图像块样本空间中的样本点两两相连形成特征线,将已有样本点扩充为特征线上的无数多个样本点,从而增强人脸图像块样本空间的表达能力;在扩充之后的样本空间中,利用最近特征线准则来定义样本空间中样本点之间的近邻关系,通过保持高低分辨率图像块样本空间的这种邻域关系,从而正确揭示高低分辨率人脸图像块流形之间的局部相似结构特征;通过保持这种局部相似结构特征,重构输入的低分辨率人脸图像块对应的高分辨率块,融合所有高分辨率块得到高分辨率人脸图像。此外,本发明根据输入的低分辨率图像块,对原始样本空间进行预筛选,再利用上述方法对其分析,大大降低本方法的运算复杂度。 | ||
搜索关键词: | 一种 基于 最近 特征 流形 学习 图像 分辨率 方法 | ||
【主权项】:
1.一种基于最近特征线流形学习的人脸图像超分辨率方法,其特征在于,包括如下步骤:步骤1,输入低分辨率人脸图像,对输入的低分辨率人脸图像、低分辨率训练集中的低分辨率人脸样本图像以及高分辨率训练集中的高分辨率人脸样本图像划分相互重叠的图像块;步骤2,对于输入的低分辨率人脸图像中每个图像块,取低分辨率训练集中每个低分辨率人脸样本图像相应位置的图像块作为样本点,建立低分辨率人脸样本块空间,计算在低分辨率人脸样本块空间上的个最近的投影点;步骤3,对于输入的低分辨率人脸图像中每个图像块,使用步骤2所得低分辨率人脸样本块空间上的个最近的投影点进行线性重构,得到线性重构的权重系数;步骤4,对于输入的低分辨率人脸图像中每个图像块,取高分辨率训练集中每个高分辨率人脸样本图像相应位置的图像块作为样本点,建立高分辨率人脸样本块空间,计算在高分辨率人脸样本块空间上与步骤2所得低分辨率人脸样本块空间上的个最近的投影点分别对应的个样本点;步骤5,将步骤2所得低分辨率人脸样本块空间上的个最近的投影点,替换为步骤4所得高分辨率人脸样本块空间上的个样本点,使用步骤3所得权重系数,加权重构出高分辨率的图像块;步骤6,将所有加权重构出的高分辨率的图像块按照位置叠加,然后除以每个像素位置交叠的次数,重构出高分辨率人脸图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110421817.2/,转载请声明来源钻瓜专利网。