[发明专利]一种非线性三维人脸的建模方法有效
申请号: | 201110440224.0 | 申请日: | 2011-12-26 |
公开(公告)号: | CN102592309A | 公开(公告)日: | 2012-07-18 |
发明(设计)人: | 孙艳丰;盖赟;家华杰;尹宝才 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06T17/00 | 分类号: | G06T17/00;G06K9/66 |
代理公司: | 北京中北知识产权代理有限公司 11253 | 代理人: | 冯梦洪 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种重建效果更好的非线性三维人脸的建模方法,包括非线性三维人脸的建模方法,包括(1)从已有人脸数据库中分别选取三维样本和二维样本,作为训练样本集,并对这些样本实施规格化操作;在训练阶段,将二维、三维训练样本集按照身份信息进行配对,使得这两组样本集中的样本按照身份信息相互对应;(2)以这两组对应样本集为基础训练各自的投影矩阵,使得不同维度的样本投影后具有最大的相关性;(3)在重建阶段,对于输入的二维人脸图像,对其进行规格化处理,在二维训练样本集的子空间进行投影,根据相关性距离选取与其相关度高的三维样本,基于这些选定的三维样本构建三维人脸形变模型,并将其与输入图像进行匹配来实现三维人脸样本重建。 | ||
搜索关键词: | 一种 非线性 三维 建模 方法 | ||
【主权项】:
一种非线性三维人脸的建模方法,其特征在于,包括以下步骤:(1)从已有的人脸数据库中分别选取三维样本和二维样本,作为训练样本集,并对这些样本实施规格化操作;在训练阶段,将二维训练样本集与三维训练样本集按照身份信息进行配对,使得这两组样本集中的样本按照身份信息相互对应;(2)以这两组对应样本集为基础训练各自的投影矩阵,使得不同维度的样本投影后具有最大的相关性;(3)在重建阶段,对于输入的二维人脸图像,首先对其进行规格化处理,然后在二维训练样本集的子空间进行投影,根据相关性距离选取与其相关度高的三维样本,基于这些选定的三维样本构建三维人脸形变模型,并将其与输入图像进行匹配来实现三维人脸样本重建。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110440224.0/,转载请声明来源钻瓜专利网。