[发明专利]一种容错系统诊断策略优化方法无效

专利信息
申请号: 201210073845.4 申请日: 2012-03-20
公开(公告)号: CN102662831A 公开(公告)日: 2012-09-12
发明(设计)人: 胡政;张士刚;刘颖;李岳;杨定新;宋立军 申请(专利权)人: 中国人民解放军国防科学技术大学
主分类号: G06F11/36 分类号: G06F11/36;G06F11/07
代理公司: 长沙新裕知识产权代理有限公司 43210 代理人: 刘熙
地址: 410073 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种容错系统诊断策略优化方法,包括如下步骤:首先以多信号流模型为基础,自动生成贝叶斯网络模型,并设置网络节点参数;同时以信息熵理论为基础,构建同时考虑诊断能力和测试费用的代价函数,实现测试序列优化选择及序贯诊断;最后根据获得的推理模型和优化的测试序列进行系统的多故障诊断。本发明方法适用于故障容错系统,能够有效处理故障诊断中的不确定问题和多故障问题,并能及时、准确定位故障。
搜索关键词: 一种 容错 系统 诊断 策略 优化 方法
【主权项】:
1.一种容错系统诊断策略优化方法,其特征在于包括以下步骤:一、基于多信号模型自动构建贝叶斯网络:第一步,利用TEAMS软件构建多信号模型,并导出相关性矩阵;利用多信号流图建模软件TEAMS构建容错系统的多信号模型,用{F1,F2,·,Fm}和{T1,T2,·,Tn}分别表示模型中所有的故障模式Fi和测试Tj的集合,导出容错系统的相关性矩阵,用下式表示:Dm×n=d11d12·d1nd21d22·d2n····dm1dm2·dmn---(1)]]>在上述相关性矩阵错误!未找到引用源。中,不同行表示不同的故障模式Fi,不同列表示不同的测试Tj,并且其中,1≤i≤m,1≤j≤n;第二步,基于相关性矩阵错误!未找到引用源。依据下述原则设定四种贝叶斯网节点:1、故障节点:针对相关性矩阵错误!未找到引用源。中的所有故障模式Fi(1≤i≤m),分别设定与之相对应的故障节点,记为故障节点fi;2、测试节点:针对相关性矩阵错误!未找到引用源。中所有的测试Tj(1≤j≤n),分别设定与之对应的测试节点,记为测试节点tj;3、辅助监控节点:选取若干个故障模式{F1,F2,·,Fm}的子集{Fi|i∈(1,m)},对应于每一个子集{Fi|i∈(1,m)},分别设定一个节点,称之为辅助监控节点;4、总监控节点:设定一个节点表示系统整体状态,即为总监控节点;第三步,添加节点间的连接关系:1、针对相关性矩阵错误!未找到引用源。中的所有元素,如果dij=1,添加从故障节点fi到测试节点tj的连接关系;2、添加由故障节点fi到辅助监控节点间的连接关系;3、添加由所有故障节点fi到总监控节点的连接关系,或者添加由辅助监控节点到总监控节点的连接关系,最终能保证从任何故障节点fi均有路径到达总监控节点即可满足要求;第四步,设定贝叶斯网节点参数:1、故障节点参数设定在构建的贝叶斯网中,故障节点fi均为父节点,对其设定两种状态:Good、Bad,假定每种故障模式Fi的平均故障间隔时间分别用MTBFi(i=1,2,·m)表示,则故障节点fi的状态概率按下式计算:PiBad=1MTBFiΣr=1m1MTBFr---(2)]]>PiGood=1-PiBad            (3)式错误!未找到引用源。、错误!未找到引用源。中PiBad、PiGood作为故障节点参数分别表示故障节点fi状态为Bad和Good的概率设置;2、测试节点参数设定测试节点tj设定为两种状态,分别对应于测试通过、未通过,记为Pass、Fail,测试节点tj均为子节点,因此设定的参数应为条件概率,具体设定规则为:针对测试节点tj,用Sj表示与其相关的故障节点fi个数,用集合{Zr}(r=1,2,·Sj)具体表示与之相关的故障节点fi集合,则测试节点tj各种状态的条件概率为:P(tj=Pass|Zr=Good,r=1,2,·Sj)=1          (4)P(tj=Fail|Zr=Good,r=1,2,·Sj)=0          (5)否则,若至少存在一个k(1≤k≤Sj)满足Zk=Bad,则:P(tj=Pass|Zr,r=1,2,·Sj)=0                (6)P(tj=Fail|Zr,r=1,2,·Sj)=1                (7)式错误!未找到引用源。-错误!未找到引用源。所表达的概率即为测试节点tj的参数,以此类推,对每个测试节点tj进行相应的设置;3、辅助监控节点参数设定辅助监控节点设定两种状态:Good和Bad,将其对应于测试节点tj的两种状态Pass和Fail,按照和测试节点tj完全相同的方式设定条件概率并作为辅助监控节点参数;4、总监控节点参数设定总监控节点设定两种状态:Good和Bad,当其状态全部为Good时,总监控节点为Good的概率为1,否则为0;至此完成贝叶斯网的自动构建;二、测试序列选择及序贯诊断:第一步,测试诊断能力的计算:测试Tj的诊断能力用该测试的信息熵H(Tj)表示,即H(Tj)=-P(tj=Pass)logP(tj=Pass)-P(tj=Fail)logP(tj=Fail)(8)式中P(tj=Pass)和P(tj=Fail)分别表示测试Tj所对应的测试节点tj状态为Pass和Fail的概率,该值基于当前已知测试结果和已知故障状态通过所构建的贝叶斯网进行推理运算得到;第二步,测试诊断价值的计算:利用式(9)计算测试Tj的诊断价值VTj=H(Tj)-w*C---(10)]]>式中:C为测试费用;w为权重系数,表示测试费用C在诊断价值中所占的比重,即测试费用C对测试序列选择的影响程度,该值根据经验进行设定;H(Tj)为依据式错误!未找到引用源。计算的诊断能力;第三步,序贯诊断的实施:基于诊断价值序贯诊断执行过程为:S1在未加入证据的情况下对贝叶斯网进行初始推理;S2依据公式错误!未找到引用源。计算测试的诊断价值;S3选择诊断价值最高的测试并执行该测试,将测试结果作为证据加入贝叶斯网,具体实施规则为:假定选择执行的测试为Tj,并且测试结果为通过,则将其对应的测试节点tj状态设为tj=Pass,否则设为tj=Fail;S4执行贝叶斯网推理;S5依次判读是否达到停机条件一和停机条件二,若达到条件一或同时达到两个条件转步骤S6,若只达到条件二,转步骤S7,否则转步骤S2;S6按条件一输出序贯诊断结果;S7按条件二输出序贯诊断结果;上述序贯诊断中的两个停机条件分别为:条件一:容错系统所有故障模式Fi中,某些故障模式Fi对应的故障节点fi状态为Bad的概率高于设定阈值,此时输出结果为这些故障模式Fi;或者总监控节点状态为Good的概率高于设定值,此时输出结果为“系统正常”;或者只关心辅助监控节点的状态,某些辅助监控节点状态为Bad的概率高于设定阈值,此时输出结果为这一辅助监控节点对应的故障模式{F1,F2,·,Fm}的子集{Fi|i∈(1,m)};条件二:所有剩余测试Tj的诊断价值均低于设定值,此时的输出结果为可能故障集合即故障模式{F1,F2,·,Fm}的子集{Fi|i∈(1,m)},该集合的元素为:对应故障节点fi状态为Bad的概率大于0的故障模式Fi。三、组合故障诊断:执行组合故障诊断的条件为:上一节序贯诊断中给出的故障模式Fi在维修操作中被证明是不存在的,此时需要进行组合故障诊断;组合故障诊断的实现步骤为:1、将利用序贯诊断得到的状态为Bad的概率最高的故障节点fi状态设为Good,并作为贝叶斯网的证据节点看待;2、利用组合故障推理算法进行贝叶斯网推理,计算序贯诊断结果中状态为Bad的概率不为0的故障节点fi的状态组合为组合故障诊断结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210073845.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top