[发明专利]基于多生物特征的身份证与持有人的同一性认证方法有效

专利信息
申请号: 201210151300.0 申请日: 2012-05-16
公开(公告)号: CN102722696A 公开(公告)日: 2012-10-10
发明(设计)人: 庞辽军;田杰;曹凯;练春锋 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于多生物特征的身份证与持有人的同一性认证方法,主要解决现有技术在交叉应用中存在安全隐患的问题。其实现步骤是:办理身份证时,采集公民的指纹、虹膜和人脸图像,获取均匀矩阵图像AI、域元素矩阵图像UI和偏移矩阵图像SI,并分别存储在人口信息数据库和身份证芯片中;认证时,认证端采集身份证持有人的指纹、虹膜和人脸图像,根据个人基本信息PI在人口信息数据库中查找均匀矩阵图像AI和域元素矩阵图像UI;利用指纹、虹膜和人脸三种生物特征、均匀矩阵图像AI、域元素矩阵图像UI和偏移矩阵图像SI进行身份证与其持有人的同一性认证。本发明提高了认证的准确率和认证系统整体的安全性,有效降低在交叉应用过程中存在的安全隐患。
搜索关键词: 基于 生物 特征 身份证 持有人 同一性 认证 方法
【主权项】:
一种基于多生物特征的身份证与持有人的同一性认证方法,包括:(1)生物特征数据录入步骤:(1a)办理身份证时,采集公民的指纹、虹膜和人脸三种生物特征,获取公民的指纹图像FP、虹膜图像IR和人脸图像FA;(1b)分别从指纹图像FP、虹膜图像IR和人脸图像FA中提取指纹特征模版FC、虹膜特征模版IC和人脸特征模版AC,并将FC、IC和AC三种特征模版融合为一个混合特征模版MC;(1c)利用模糊提取方法,从特征模版MC中提取二进制码字BC,并通过m个密码哈希函数将码字BC映射为密码哈希函数值矩阵E;(1d)设定高斯分布矩阵F、均匀矩阵A,并计算高斯模数矩阵F′、域元素矩阵U和偏移矩阵S:F′=Fmodq,U=AF′modq,S=F′‑E,其中,q为素数,mod表示取模运算,modq表示模数为q的取模运算;(1e)将均匀矩阵A、域元素矩阵U转换成均匀矩阵图像AI、域元素矩阵图像UI,并将均匀矩阵图像AI、域元素矩阵图像UI存储在人口信息数据库中;(1f)将偏移矩阵S转换成偏移矩阵图像SI,并将偏移矩阵图像SI存储在身份证芯片中;(2)身份证与持有人的同一性认证步骤:(2a)认证时,认证端采集身份证持有人的指纹图像FP′、虹膜图像IR′和人脸图像FA′;(2b)读取身份证芯片中的个人基本信息PI和偏移矩阵图像SI;(2c)对公民的指纹图像FP′、虹膜图像IR′和人脸图像FA′分别提取指纹特征模版FC′、虹膜特征模版IC′和人脸特征模版AC′,并将FC′、IC′和AC′三种特征模版 融合为一个混合特征模版MC′;(2d)利用模糊提取方法,从特征模版MC′中提取二进制码字BC′,并通过m个密码哈希函数将码字BC′映射为密码哈希函数值矩阵E′;(2e)将偏移矩阵图像SI转换为偏移矩阵S,并根据哈希密码函数值矩阵E′计算高斯模数矩阵F″:F″=S+E′;(2f)根据个人基本信息PI在人口信息数据库中检索相应的均匀矩阵图像AI、域元素矩阵图像UI,并将均匀矩阵图像AI、域元素矩阵图像UI分别转换为均匀矩阵A、域元素矩阵U;(2g)利用高斯模数矩阵F″,计算结果矩阵FN:FN=U‑AF″modq,其中,q为素数,mod表示取模运算,modq表示模数为q的取模运算,判断结果矩阵FN是否为全零矩阵,若结果矩阵FN是全零矩阵,则说明身份证与其持有人具有同一性;否则,身份证与其持有人不具有同一性。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210151300.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top