[发明专利]支座广义位移温度变化基于混合监测的受损索识别方法有效

专利信息
申请号: 201210173704.X 申请日: 2012-05-30
公开(公告)号: CN102735468A 公开(公告)日: 2012-10-17
发明(设计)人: 韩玉林;王芳;韩佳邑 申请(专利权)人: 东南大学
主分类号: G01M99/00 分类号: G01M99/00;G01K13/00
代理公司: 南京天翼专利代理有限责任公司 32112 代理人: 汤志武
地址: 211189 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 支座广义位移温度变化基于混合监测的受损索识别方法基于混合监测,通过监测支座广义位移、索结构温度和环境温度来决定是否需要更新索结构的力学计算基准模型,得到计入支座广义位移、索结构温度和环境温度的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量变化矩阵、单位损伤标量和待求的索系统当前名义损伤向量间存在的近似线性关系算出索系统当前名义损伤向量的非劣解,据此可以在有支座位移和温度变化时,比较准确地确定受损索的位置及其损伤程度。
搜索关键词: 支座 广义 位移 温度 变化 基于 混合 监测 受损 识别 方法
【主权项】:
一种支座广义位移温度变化基于混合监测的受损索识别方法,其特征在于所述方法包括:a.设共有N根支承索,首先确定支承索的编号规则,按此规则将索结构中所有的支承索编号,该编号在后续步骤中将用于生成向量和矩阵;确定混合监测时指定的将被监测索力的支承索,设索系统中共有N根支承索,索结构的被监测的索力数据由索结构上M1个指定支承索的M1个索力数据来描述,索结构索力的变化就是所有指定支承索的索力的变化;每次共有M1个索力测量值或计算值来表征索结构的索力信息;M1是一个不小于0的整数;确定混合监测时指定的将被监测应变的被测量点,索结构的被监测的应变数据可由索结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,索结构应变数据的变化就是K2个指定点的所有被测应变的变化;每次共有M2个应变测量值或计算值来表征索结构应变,M2为K2和L2之积;M2是不小于0的整数;确定混合监测时指定的将被监测角度的被测量点,索结构的被监测的角度数据由索结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,索结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化;每次共有M3个角度坐标分量测量值或计算值来表征索结构的角度信息,M3为K3、L3和H3之积;M3是一个不小于0的整数;确定混合监测时指定的将被监测的形状数据,索结构的被监测的形状数据由索结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,索结构形状数据的变化就是K4个指定点的所有坐标分量的变化;每次共有M4个坐标测量值或计算值来表征索结构形状,M4为K4和L4之积;M4是一个不小于0的整数;综合上述混合监测的被监测量,整个索结构共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K,K为M1、K2、K3和K4之和,K和M不得小于索的数量N;为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热 学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,特别的,对于支承索沿每一个测量索结构沿壁厚的温度分布的方向仅仅取一个点,即仅仅测量支承索的表面点的温度,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量索结构沿壁厚的温度分布的方向”测量获得的 “索结构沿厚度的温度分布数据”,在本方法中称为“相同海拔高度索结构沿厚度的温度分布数据”,设选取了H个不同的海拔高度,在每一个海拔高度处,选取了B个测量索结构沿壁厚的温度分布的方向,沿每个测量索结构沿壁厚的温度分布的方向在索结构中选取了E个点,其中H和E都不小于3,B不小于2,特别的,对于支承索E等于1,计索结构上“测量索结构沿厚度的温度分布数据的点”的总数为HBE个,后面将通过实测得到这HBE个“测量索结构沿厚度的温度分布数据的点”的温度,称实测得到的温度数据为“HBE个索结构沿厚度温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这HBE个测量索结构沿厚度的温度分布数据的点的温度,就称计算得到的温度数据为“HBE个索结构沿厚度温度计算数据”;本方法中将在每一个选取的海拔高度处“相同海拔高度索结构沿厚度的温度分布数据”的个数温度分布数据”;在索结构所在地按照气象学测量气温要求选取一个位置,将在此位置实测得到符合气象学测量气温要求的索结构所在环境的气温;在索结构所在地的空旷无遮挡处选取一个位置,该位置应当在全年的每一日都能得到该地所能得到的该日的最充分的日照,在该位置安放一块碳钢材质的平板,称为参考平板,参考平板与地面不可接触,参考平板离地面距离不小于1.5米,该参考平板的一面向阳,称为向阳面,参考平板的向阳面是粗糙的和深色的,参考平板的向阳面应当在全年的每一日都能得到一块平板在该地所能得到的该日的最充分的日照,参考平板的非向阳面覆有保温材料,将实时监测得到参考平板的向阳面的温度;b2:实时监测得到上述R个索结构表面点的R个索结构表面温度实测数据,同时实时监测得到前面定义的索结构沿厚度的温度分布数据,同时实时监测得到符合气象学测量气温要求的索结构所在环境的气温数据;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据序列,索结构所在环境的气温实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的索结构所在环境的气温实测数据按照时间先后顺序排列,找到索结构所在环境的气温实测数据序列中的最高温度和最低温度,用索结构所在环境的气温实测数据序列中的最高温度减去最低温度得到索结构所在环境的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为环境最大温差,记为ΔTemax;由索结构所在环境的气温实测数据序列通过常规数学计算得到索结构所在环境的 气温关于时间的变化率,该变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据序列,参考平板的向阳面的温度的实测数据序列由当日日出时刻到次日日出时刻后30分钟之间的参考平板的向阳面的温度的实测数据按照时间先后顺序排列,找到参考平板的向阳面的温度的实测数据序列中的最高温度和最低温度,用参考平板的向阳面的温度的实测数据序列中的最高温度减去最低温度得到参考平板的向阳面的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,称为参考平板最大温差,记为ΔTpmax;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的所有R个索结构表面点的索结构表面温度实测数据序列,有R个索结构表面点就有R个索结构表面温度实测数据序列,每一个索结构表面温度实测数据序列由一个索结构表面点的当日日出时刻到次日日出时刻后30分钟之间的索结构表面温度实测数据按照时间先后顺序排列,找到每一个索结构表面温度实测数据序列中的最高温度和最低温度,用每一个索结构表面温度实测数据序列中的最高温度减去最低温度得到每一个索结构表面点的温度的当日日出时刻到次日日出时刻后30分钟之间的最大温差,有R个索结构表面点就有R个当日日出时刻到次日日出时刻后30分钟之间的最大温差数值,其中的最大值称为索结构表面最大温差,记为ΔTsmax;由每一索结构表面温度实测数据序列通过常规数学计算得到每一个索结构表面点的温度关于时间的变化率,每一个索结构表面点的温度关于时间的变化率也随着时间变化;通过实时监测得到当日日出时刻到次日日出时刻后30分钟之间的、在同一时刻、HBE个“索结构沿厚度的温度分布数据”后,计算在每一个选取的海拔高度处共计BE个“相同海拔高度索结构沿厚度的温度分布数据”中的最高温度与最低温度的差值,这个差值的绝对值称为“相同海拔高度处索结构厚度方向最大温差”,选取了H个不同的海拔高度就有H个“相同海拔高度处索结构厚度方向最大温差”,称这H个“相同海拔高度处索结构厚度方向最大温差”中的最大值为“索结构厚度方向最大温差”,记为ΔTtmax;b3:测量计算获得索结构稳态温度数据;首先,确定获得索结构稳态温度数据的时刻,与决定获得索结构稳态温度数据的时刻相关的条件有六项,第一项条件是获得索结构稳态温度数据的时刻介于当日日落时刻到次日日出时刻后30分 钟之间,日落时刻是指根据地球自转和公转规律确定的气象学上的日落时刻,可以查询资料或通过常规气象学计算得到所需的每一日的日落时刻;第二项条件的a条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,参考平板最大温差ΔTpmax和索结构表面最大温差ΔTsmax都不大于5摄氏度;第二项条件的b条件是在当日日出时刻到次日日出时刻后30分钟之间的这段时间内,在前面测量计算得到的环境最大误差ΔTemax不大于参考日温差ΔTr,且参考平板最大温差ΔTpmax减去2摄氏度后不大于ΔTEmax,且索结构表面最大温差ΔTsmax不大于ΔTpmax;只需满足第二项的a条件和b条件中的一项就称为满足第二项条件;第三项条件是在获得索结构稳态温度数据的时刻,索结构所在环境的气温关于时间的变化率的绝对值不大于每小时0.1摄氏度;第四项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的温度关于时间的变化率的绝对值不大于每小时0.1摄氏度;第五项条件是在获得索结构稳态温度数据的时刻,R个索结构表面点中的每一个索结构表面点的索结构表面温度实测数据为当日日出时刻到次日日出时刻后30分钟之间的极小值;第六项条件是在获得索结构稳态温度数据的时刻,“索结构厚度方向最大温差”ΔTtmax不大于1摄氏度;本方法利用上述六项条件,将下列三种时刻中的任意一种称为“获得索结构稳态温度数据的数学时刻”,第一种时刻是满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第五项条件的时刻,第二种时刻是仅仅满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第六项条件的时刻,第三种时刻是同时满足上述“与决定获得索结构稳态温度数据的时刻相关的条件”中的第一项至第六项条件的时刻;当获得索结构稳态温度数据的数学时刻就是本方法中实际记录数据时刻中的一个时,获得索结构稳态温度数据的时刻就是获得索结构稳态温度数据的数学时刻;如果获得索结构稳态温度数据的数学时刻不是本方法中实际记录数据时刻中的任一个时刻,则取本方法最接近于获得索结构稳态温度数据的数学时刻的那个实际记录数据的时刻为获得索结构稳态温度数据的时刻;本方法将使用在获得索结构稳态温度数据的时刻测量记录的量进行索结构相关健康监测分析;本方法近似认为获得索结构稳态温度数据的时刻的索结构温度场处于稳态,即此时刻的索结构温度不随时间变化,此时刻就是本方法的“获得索结构稳态温度数据的时刻”;然后,根据索结构传热特性, 利用获得索结构稳态温度数据的时刻的“R个索结构表面温度实测数据”和“HBE个索结构沿厚度温度实测数据”,利用索结构的传热学计算模型,通过常规传热计算得到在获得索结构稳态温度数据的时刻的索结构的温度分布,此时索结构的温度场按稳态进行计算,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据包括索结构上R个索结构表面点的计算温度,R个索结构表面点的计算温度称为R个索结构稳态表面温度计算数据,还包括索结构在前面选定的HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度,HBE个“测量索结构沿厚度的温度分布数据的点”的计算温度称为“HBE个索结构沿厚度温度计算数据”,当R个索结构表面温度实测数据与R个索结构稳态表面温度计算数据对应相等时,且“HBE个索结构沿厚度温度实测数据”与“HBE个索结构沿厚度温度计算数据”对应相等时,计算得到的在获得索结构稳态温度数据的时刻的索结构的温度分布数据在本方法中称为“索结构稳态温度数据”,此时的“R个索结构表面温度实测数据”称为“R个索结构稳态表面温度实测数据”,“HBE个索结构沿厚度温度实测数据”称为“HBE个索结构沿厚度稳态温度实测数据”;在索结构的表面上取“R个索结构表面点”时,“R个索结构表面点”的数量与分布必须满足三个条件,第一个条件是当索结构温度场处于稳态时,当索结构表面上任意一点的温度是通过“R个索结构表面点”中与索结构表面上该任意点相邻的点的实测温度线性插值得到时,线性插值得到的索结构表面上该任意点的温度与索结构表面上该任意点的实际温度的误差不大于5%;索结构表面包括支承索表面;第二个条件是“R个索结构表面点”中在同一海拔高度的点的数量不小于4,且“R个索结构表面点”中在同一海拔高度的点沿着索结构表面均布;“R个索结构表面点”沿海拔高度的所有两两相邻索结构表面点的海拔高度之差的绝对值中的最大值Δh不大于0.2℃除以ΔTh得到的数值,为方便叙述取ΔTh的单位为℃/m,为方便叙述取Δh的单位为m;“R个索结构表面点”沿海拔高度的两两相邻索结构表面点的定义是指只考虑海拔高度时,在“R个索结构表面点”中不存在一个索结构表面点,该索结构表面点的海拔高度数值介于两两相邻索结构表面点的海拔高度数值之间;第三个条件是查询或按气象学常规计算得到索结构所在地和所在海拔区间的日照规律,再根据索结构的几何特征及方位数据,在索结构上找到全年受日照时间最充分的那些表面点的位置,“R个索 结构表面点”中至少有一个索结构表面点是索结构上全年受日照时间最充分的那些表面点中的一个点;c.按照“本方法的索结构的温度测量计算方法”直接测量计算得到初始状态下的索结构稳态温度数据,初始状态下的索结构稳态温度数据称为初始索结构稳态温度数据,记为“初始索结构稳态温度数据向量To”;实测或查资料得到索结构所使用的各种材料的随温度变化的物理和力学性能参数;在实测得到To的同时,也就是在获得初始索结构稳态温度数据向量To的时刻的同一时刻,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据包括表达支承索的健康状态的无损检测数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、索结构支座广义坐标数据、初始索结构空间坐标数据;所有被监测量的初始数值组成被监测量初始数值向量Co;利用能表达支承索的健康状态的无损检测数据建立索系统初始损伤向量do,索系统初始损伤向量do的元素个数等于N,do的元素与支承索是一一对应关系,索系统初始损伤向量do的元素数值代表对应支承索的损伤程度,若索系统初始损伤向量do的某一元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力,如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者认为索结构初始状态为无损伤状态时,向量do的各元素数值取0;对应于Ao的索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo;支座广义坐标包括线量和角量两种;d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的随温度变化的物理和力学性能参数、初始索结构支座广义坐标向量Uo、初始索结构稳态温度数据向量To和和前面步骤得到的所有的索结构数据,建立计入“索结构稳态温度数据”的索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的“索结构稳态温度数据”就是“初始索结构稳态温度数据向量To”;对应于Ao的支承索健康状态用索系统初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示; 第一次建立计入“索结构稳态温度数据”的索结构的当前初始力学计算基准模型Ato、被监测量当前初始数值向量Cto和“当前初始索结构稳态温度数据向量Tto”;第一次建立索结构的当前初始力学计算基准模型Ato和被监测量当前初始数值向量Cto时,索结构的当前初始力学计算基准模型Ato就等于索结构的初始力学计算基准模型Ao,被监测量当前初始数值向量Cto就等于被监测量初始数值向量Co;Ato对应的“索结构稳态温度数据”称为“当前初始索结构稳态温度数据”,记为“当前初始索结构稳态温度数据向量Tto”,第一次建立索结构的当前初始力学计算基准模型Ato时,Tto就等于To;对应于索结构的当前初始力学计算基准模型Ato的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Uto,第一次建立索结构的当前初始力学计算基准模型Ato时,Uto就等于Uo;Ato的支承索的初始健康状态与Ao的支承索的健康状态相同,也用索系统初始损伤向量do表示,在后面的循环过程中Ato的支承索的初始健康状态始终用索系统初始损伤向量do表示;To、Uo和do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成,Tto、Uto和do是Ato的参数,Cto由Ato的力学计算结果组成;在本方法中Ao、Uo、Co、do和To是不变的;e.从这里进入由第e步到第m步的循环;在索结构服役过程中,不断按照“本方法的索结构的温度测量计算方法”不断实测计算获得“索结构稳态温度数据”的当前数据,“索结构稳态温度数据”的当前数据称为“当前索结构稳态温度数据”,记为“当前索结构稳态温度数据向量Tt”,向量Tt的定义方式与向量To的定义方式相同;在实测得到当前索结构稳态温度数据向量Tt的同一时刻,实测得到索结构支座广义坐标当前数据,所有索结构支座广义坐标当前数据组成当前索结构实测支座广义坐标向量Ut;f.根据当前索结构实测支座广义坐标向量Ut和当前索结构稳态温度数据向量Tt,按照步骤f1至f3更新当前初始力学计算基准模型Ato、当前初始索结构支座广义坐标向量Uto、被监测量当前初始数值向量Cto和当前初始索结构稳态温度数据向量Tto;f1.分别比较Ut与Uto、Tt与Tto,如果Ut等于Uto且Tt等于Tto,则Ato、Uto、Cto和Tto保持不变;否则需要按下列步骤对Ato、Uto和Tto进行更新;f2.计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的当前支座广义位移,用支座广义位移向量V表示支座广义位移,V等于Ut减去Uo,支座广义位移向量V中的元素与支座广义位移分量之间是一一对应关系,支座广义位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的广义位移;计算Tt与To的差,Tt与To的差就是当前索结构稳态温度数据关于初始索结构稳态温度数据的变化,Tt与To的差用稳态温度变化向量S表示,S等于Tt减去To,S表示索结构稳态温度数据的变化;f3.先对Ao中的索结构支座施加当前支座广义位移约束,当前支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,再对Ao中的索结构施加温度变化,施加的温度变化的数值就取自稳态温度变化向量S,对Ao中索结构支座施加支座广义位移约束且对Ao中的索结构施加的温度变化后得到更新的当前初始力学计算基准模型Ato,更新Ato的同时,Uto所有元素数值也用Ut所有元素数值对应代替,即更新了Uto,Tto所有元素数值也用Tt的所有元素数值对应代替,即更新了Tto,这样就得到了正确地对应于Ato的Tto和Uto;更新Cto的方法是:当更新Ato后,通过力学计算得到Ato中所有被监测量的、当前的具体数值,这些具体数值组成Cto;Ato的支承索的初始健康状态始终用索系统初始损伤向量do表示;g.在当前初始力学计算基准模型Ato的基础上按照步骤g1至g4进行若干次力学计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du;g1.索结构单位损伤被监测量变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型Ato、当前初始索结构支座广义坐标向量Uto、被监测量当前初始数值向量Cto和当前初始索结构稳态温度数据向量Tto之后,必须接着更新索结构单位损伤被监测量变化矩阵ΔC和单位损伤标量Du;g2.在索结构的当前初始力学计算基准模型Ato的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根支承索就有N次计算,每一次计算假设索系统中只有一根支承索有单位损伤标量Du,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,每一次计算得到索结构中所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量 计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;g3.每一次计算得到的被监测量计算当前向量减去被监测量当前初始数值向量Cto得到一个被监测量变化向量;有N根支承索就有N个被监测量变化向量;g4.由这N个被监测量变化向量依次组成有N列的索结构单位损伤被监测量变化矩阵ΔC;索结构单位损伤被监测量变化矩阵ΔC的每一列对应于一个被监测量变化向量;h.在实测得到当前索结构稳态温度数据向量Tt的同时,实测得到在获得当前索结构稳态温度数据向量Tt的时刻的同一时刻的索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量当前初始数值向量Cto与被监测量初始数值向量Co的定义方式相同,三个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;i.定义索系统当前名义损伤向量d,索系统当前名义损伤向量d的元素个数等于支承索的数量,索系统当前名义损伤向量d的元素和支承索之间是一一对应关系,索系统当前名义损伤向量d的元素数值代表对应支承索的名义损伤程度或名义健康状态;向量d的元素的编号规则与向量do的元素的编号规则相同;j.依据被监测量当前数值向量C同被监测量当前初始数值向量Cto、索结构单位损伤被监测量变化矩阵ΔC、单位损伤标量Du和待求的索系统当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出索系统当前名义损伤向量d; C = C o t + 1 D u ΔC · d 式1k.定义索系统当前实际损伤向量da,索系统当前实际损伤向量da的元素个数等于支承索的数量,索系统当前实际损伤向量da的元素和支承索之间是一一对应关系,索系统当前实际损伤向量da的元素数值代表对应支承索的实际损伤程度或实际健康状态;向量da的元素的编号规则与向量do的元素的编号规则相同;l.利用式2表达的索系统当前实际损伤向量da的第j个元素daj同索系统初始损伤向量do的第j个元素doj和索系统当前名义损伤向量d的第j个元素dj间 的关系,计算得到索系统当前实际损伤向量da的所有元素; d j a = 1 - ( 1 - d oj ) ( 1 - d j ) 式2式2中j=1,2,3,.......,N,daj为0时表示第j根支承索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第j根支承索丧失相应比例的承载能力;索系统当前实际损伤向量da的元素数值代表对应支承索的损伤程度,所以根据索系统当前实际损伤向量da能够确定有哪些索受损及其损伤程度,即实现了索结构中索系统的受损索识别或健康监测;m.回到第e步,开始由第e步到第m步的下一次循环。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210173704.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top