[发明专利]一种CoSb3纳米颗粒薄膜的制备方法无效
申请号: | 201210238183.1 | 申请日: | 2012-07-11 |
公开(公告)号: | CN102796994A | 公开(公告)日: | 2012-11-28 |
发明(设计)人: | 杨亚军;刘宪云;苏江滨;蒋美萍 | 申请(专利权)人: | 常州大学 |
主分类号: | C23C16/44 | 分类号: | C23C16/44;C23C16/08;B22F9/28;B82Y40/00 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 楼高潮 |
地址: | 213164 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及CoSb3热电材料,特指一种CoSb3纳米颗粒薄膜的制备方法。首先按摩尔比1:3称量CoCl2·6H2O粉末和Sb粉末,分别装入各自坩埚中,并将坩埚和载玻片衬底置入石英管内;石英管置入水平管式炉内,多次抽真空和通入95%的氩气和5%的氢气的混合气,排除石英管内的氧气;管式炉升温,低压状态下,在载玻片衬底上化学气相沉积得到CoSb3纳米颗粒薄膜;测试其Seebeck系数、电导率以及热导率,计算其ZT值。本发明一步合成CoSb3纳米颗粒薄膜,工艺简单,所制备的CoSb3纳米颗粒直径在200-400nm,具有良好的导电率和较低的热导率,可直接用于热电研究,有望用于新型高效热电转换器件。 | ||
搜索关键词: | 一种 cosb sub 纳米 颗粒 薄膜 制备 方法 | ||
【主权项】:
一种CoSb3纳米颗粒薄膜的制备方法,其特征在于包括如下步骤:1)确定反应物的比例,称取CoCl2·6H2O粉和Sb粉,分别放入各自坩埚中;2)将石英管放置在水平真空管式炉内,将装有CoCl2·6H2O粉和 Sb粉的坩埚分别置入石英管内,并置入载玻片作为衬底;3)用机械泵对石英管进行抽真空,然后通入氩气和氢气的混合气,将此过程重复三次,用于去除石英管内的氧气;4)将管式炉升温,在一定压强内保持一段时间,期间不断通入氩气和氢气的混合气,并控制流量;5)石英管降至室温后,将载玻片取出,并测试其Seebeck系数、电导率以及热导率,研究其热电性能。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常州大学,未经常州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210238183.1/,转载请声明来源钻瓜专利网。
- 上一篇:提升位移式原位单剪法检测混凝土抗压强度的装置
- 下一篇:珠管饰件刺绣机
- 同类专利
- 专利分类
C23 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制
C23C 对金属材料的镀覆;用金属材料对材料的镀覆;表面扩散法,化学转化或置换法的金属材料表面处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆
C23C16-00 通过气态化合物分解且表面材料的反应产物不留存于镀层中的化学镀覆,例如化学气相沉积
C23C16-01 .在临时基体上,例如在随后通过浸蚀除去的基体上
C23C16-02 .待镀材料的预处理
C23C16-04 .局部表面上的镀覆,例如使用掩蔽物的
C23C16-06 .以金属材料的沉积为特征的
C23C16-22 .以沉积金属材料以外之无机材料为特征的
C23C 对金属材料的镀覆;用金属材料对材料的镀覆;表面扩散法,化学转化或置换法的金属材料表面处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆
C23C16-00 通过气态化合物分解且表面材料的反应产物不留存于镀层中的化学镀覆,例如化学气相沉积
C23C16-01 .在临时基体上,例如在随后通过浸蚀除去的基体上
C23C16-02 .待镀材料的预处理
C23C16-04 .局部表面上的镀覆,例如使用掩蔽物的
C23C16-06 .以金属材料的沉积为特征的
C23C16-22 .以沉积金属材料以外之无机材料为特征的
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法