[发明专利]面向数控机床故障诊断与故障预报的知识库构建方法有效
申请号: | 201210240271.5 | 申请日: | 2012-07-10 |
公开(公告)号: | CN102736562A | 公开(公告)日: | 2012-10-17 |
发明(设计)人: | 徐小力;吴国新;王少红;任彬 | 申请(专利权)人: | 北京信息科技大学 |
主分类号: | G05B19/406 | 分类号: | G05B19/406 |
代理公司: | 北京远大卓悦知识产权代理事务所(普通合伙) 11369 | 代理人: | 贺持缓 |
地址: | 100092 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种面向数控机床故障诊断与故障预报的知识库构建方法,其步骤如下:步骤一、通过远程监测设备对高档车削加工中心实时在线监测,获得代表不同故障类型的多组振动数据Xj(t),j为采集到的振动数据组数,n为正整数;步骤二、对实时在线监测的多组振动数据Xj(t)依次进行时态粗糙小波包分析处理,得到能量特征向量T′作为条件属性,以故障类型为决策属性,构建故障知识原始决策表;步骤三、对故障知识原始决策表进行基于差别矩阵的故障特征属性约简,生成规则,构成知识库;步骤四、采用规则的可信度作为评价指标对最终规则进行度量和评价。本发明能为故障诊断和故障预报提供有效的保障,本发明可以广泛应用于高档车削加工中心。 | ||
搜索关键词: | 面向 数控机床 故障诊断 故障 预报 知识库 构建 方法 | ||
【主权项】:
1.一种面向数控机床故障诊断与故障预报的知识库构建方法,其步骤如下:步骤一、通过远程监测设备对高档车削加工中心实时在线监测,获得代表不同故障类型的多组振动数据Xj(t),j=1,2,…,n,j为采集到的振动数据组数,n为正整数;步骤二、对实时在线监测的多组振动数据Xj(t)依次进行时态粗糙小波包分析处理,得到能量特征向量T′作为条件属性,以故障类型为决策属性,构建故障知识原始决策表;所述时态粗糙小波包分析方法如下:(1)选择正交小波包分解公式μ 2 n ( x ) = Σ k h k - 2 x μ n ( k ) μ 2 n + 1 ( x ) = Σ k g k - 2 x μ n ( k ) , ]]> 将采集到的多组振动信号Xj(t)依次进行小波包分解,得到分解后的所有分解层的低频带系数u2n(x)和高频系数u2n+1(x);其中hk、gk是一对共轭正交实系数滤波器,且hk=(-1)kgk(1-k);k为小波包分解层数,k=1,2,…;n=0、1、2…,其为小波包分解频率带序列号;(2)将小波包分解的最后一层利用粗糙集理论中的等价关系上、下近似的概念,划分成上、下两部分,分别表示粗糙集的上、下近似,此分解层的频率上边界为
称为上边界时态粗糙小波包低频系数;下边界为u2n+1(x),称为下边界时态粗糙小波包高频系数;(3)对上边界时态粗糙小波包低频系数
和下边界时态粗糙小波包高频系数u2n+1(x)进行重构,则得到重构信号Sn为:
(4)分别对各重构信号Sn求解相应的能量Enj=∫|Snj(x)|2dx,得到能量向量T=[En0,En1,En2,…,Enj],j为采集到的振动数据组数;(5)将能量向量T进行归一化处理,得到能量特征向量T′,以能量特征向量T′为条件属性,故障类型为决策属性,构建故障知识原始决策表;步骤三、对故障知识原始决策表进行基于差别矩阵的故障特征属性约简,生成规则,构成知识库;步骤四、采用规则的可信度α作为评价指标对最终规则进行度量和评价,并将可信度α≥80%的最终规则形成知识库,并传输至故障诊断与预报知识库内;样本规则库和故障案例库存储的历史数据也传输至故障诊断与预报知识库内;故障诊断与预报知识库将接收到的各个数据综合处理后,输出故障信息,实现为高档车削加工中心进行故障诊断及故障预测;同时将故障信息作为历史数据存储至样本规则库和故障案例库。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京信息科技大学,未经北京信息科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210240271.5/,转载请声明来源钻瓜专利网。