[发明专利]一种更新P2P网络用户主观行为分析模型参数的方法及系统有效
申请号: | 201210288565.5 | 申请日: | 2012-08-14 |
公开(公告)号: | CN103593543B | 公开(公告)日: | 2016-11-23 |
发明(设计)人: | 童恩栋;牛温佳;曲本科;苗光胜;谭红艳;唐晖;慈松 | 申请(专利权)人: | 中国科学院声学研究所 |
主分类号: | G06F19/00 | 分类号: | G06F19/00;G06F17/30 |
代理公司: | 北京法思腾知识产权代理有限公司 11318 | 代理人: | 杨小蓉;杨青 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种更新P2P网络中的用户主观行为分析模型参数的方法及系统,该方法从构建P2P网络中基于计划行为理论的用户主观行为分析模型出发,根据P2P网络中当前的版权内容分布情况,量化信念指标,扩充样本数据,从而动态修正行为模型参数。本发明一方面面向对等网络版权内容分析,建立了包括喜好度、受欢迎程度、版权意识度、惩罚度各信念指标在内的基于计划行为理论的用户主观行为分析模型,对版权管控中用户主观行为分析提出了理论依据;另一方面,基于客观版权内容分布情况,提出了该用户主观行为分析模型中各信念指标的量化方法。本发明提出了用户主观行为分析模型的动态拟合方法。基于当前版权内容分布,动态修正用户主观行为分析模型参数。 | ||
搜索关键词: | 一种 更新 p2p 网络 用户 主观 行为 分析 模型 参数 方法 系统 | ||
【主权项】:
一种更新P2P网络中的用户主观行为分析模型参数的方法,该方法基于动态拟合的方法动态实时调整用户主观行为分析模型的参数,所述方法包含:步骤101)根据选取的信念指标设定用户主观行为分析模型,并采用调查问卷获得初始样本数据;步骤102)依据初始样本数据获得各信念指标间的第一相关系数矩阵;步骤103)根据第一相关系数矩阵及用户主观行为分析模型,采用统计算法生成一个基于该用户主观行为分析模型的最接近信念指标的相关系数矩阵的相关矩阵,即再生矩阵,并依据该再生矩阵确定用户主观行为分析模型各参数的初始值;步骤104)通过多次迭代修正用户主观行为分析模型的各初始参数值直至该用户主观行为分析模型较好的拟合调查问卷获得的样本数据,获得初始的用户主观行为分析模型;步骤105)基于P2P网络的版权内容分布信息得到基于版权内容分布的样本数据,将该样本数据与调查问卷获得的初始样本数据融合获得第二样本数据,并依据第二样本数据生成各信念指标间的第二相关系数矩阵;步骤106)监控基于初始用户主观行为分析模型得到的再生矩阵和第二相关系数矩阵之间的拟合关系,当两者拟合度小于某设定阈值时,根据当前信念指标间的相关系数矩阵,重新构建再生矩阵以更新模型参数,由模型评价与模型拟合多次迭代后,得到拟合当前内容分布的用户主观行为分析模型的参数,依据该参数修正用户主观行为分析模型,从而获得实时动态的用户主观行为分析模型;其中,所述的信念指标包含:喜好度、版权意识度、受欢迎程度和惩罚度;所述第二样本数据包含来源于调查问卷的样本数据和基于版权内容分布信息得到的样本数据,所述版权内容分布信息为P2P网络中的事件行为,包括用户拥有的具体内容、用户当前的上传或下载状态、上传或下载状态持续的时间以及上传或下载状态发生的次数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所,未经中国科学院声学研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210288565.5/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用