[发明专利]社区发现方法有效

专利信息
申请号: 201210304097.6 申请日: 2012-08-24
公开(公告)号: CN102880644A 公开(公告)日: 2013-01-16
发明(设计)人: 于秦;李定伟;马立香;毛玉明 申请(专利权)人: 电子科技大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 成都行之专利代理事务所(普通合伙) 51220 代理人: 温利平
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种社区发现方法。包括步骤:分析每个用户的信息,从中提取特征词,计算用户对应的特征向量;以某一个用户为基准,计算其余用户与该用户的相似度;将相似度高于门限值的用户标记为相似用户,将所有相似用户合并成为一个新的用户,被合并的相似用户记录为新用户的子用户,计算并简化新用户的特征向量;直到新用户达到设定的社区发现门限时完成新社区的发现。本发明的方法根据用户多属性相似度进行社区划分,不依赖用户的网络行为,在社会网络形成之初就能将兴趣相似、研究方向相似、行为方式相似的用户们组织在一个社区内,且发现的社区属性丰富,社区用户相似度高,能够为用户提供一个较为理想的信息交流和共享的平台。
搜索关键词: 社区 发现 方法
【主权项】:
1.一种社区发现方法,具体包括如下步骤:步骤1:建立一个基准特征向量和特征词库;步骤2:提取社会网络中的用户特征词,所述社会网络可以图的形式来表示,令G=(V,E),其中,G表示一个社会网络,V表示用户v的集合,E表示用户之间边e的集合;社会网络图中的每个节点代表一个用户,每个用户的用户信息用来描述用户的属性,用户信息可以分割为多个标签,标签是用户信息的基本单位,将每个标签看成关键词,然后将各个关键词与已建立的特征词库里的特征词作比较,若该关键词存在于特征词库里,则该关键词就为特征词,反之,则不是特征词;步骤3:建立用户特征向量,用户vi的特征向量用数学符号来表示,其中,i为用户标号,为特征向量的分量;步骤4:计算用户相似度,根据步骤3得到用户特征向量,随机以某一个用户为基准,计算其余用户与该基准用户的相似程度,两个用户vi和vj相似度的采用如下公式得到:sim(Li,Lj)=w1sim(Ai,Aj)+w2sim(Bj,Bj)+w3sim(Ci,Cj)+...ij]]>其中,分别为用户vi和vj的特征向量,特征向量中的元素个数为N,各个分向量的相似度的权重wi,(i=1,2,…,N)满足Li=(Ai,Bi,Ci,Di,...)]]>Lj=(Aj,Bj,Cj,Dj,...)]]>的分向量的相似度,采用如下公式:sim(Ai,Aj)=Ai·Aj+ϵmax(||Ai||2,||Aj||2)+ϵ+min(||Ai||2,||Aj||2)-Ai·Aj||Amax||2,ij]]>其中,分别为两个用户所对应的特征向量中分向量的模,表示两个分向量的内积,ε表示一个极小值,表示全为1的向量,即步骤5:将相似度高于相似门限值的用户记录为相似用户,把所有的相似用户合并成为一个新的用户,被合并的相似用户记录为新用户的子用户;步骤6:重复步骤4和步骤5,直到所有用户都被划分到新用户中,若新用户达到预先设定的社区发现的门限值时,发现新的社区,该新用户内的所有子用户组成一个社区。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210304097.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top