[发明专利]高炉炉渣粘度预报方法在审

专利信息
申请号: 201210342377.6 申请日: 2012-09-14
公开(公告)号: CN103679268A 公开(公告)日: 2014-03-26
发明(设计)人: 储滨;肖阳;凌丹;郑鑫 申请(专利权)人: 宝钢不锈钢有限公司
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 上海集信知识产权代理有限公司 31254 代理人: 肖祎
地址: 200431 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 根据本发明揭示了一种高炉炉渣粘度预报方法,包括如下的步骤:神经元网络构建步骤,构建的神经元网络结构包含输入层、隐含层和输出层,输入层、隐含层和输出层之间由连接权值连接,隐含层具有阈值;初始化步骤,获取训练数据,并对训练数据、连接权值和阈值进行初始化;神经元网络自学习步骤,依次提取训练数据,根据误差和局部梯度,调整连接权值和阈值,直至所有的训练数据都被使用,保存连接权值和阈值的最终值;炉渣粘度预报步骤,将神经元网络的连接权值和阈值固定在最终值,输入实际的炉渣中各成分的百分含量,输出预报的不同温度下的炉渣粘度、熔化性温度和脱硫系数。本发明的方法误差能稳定在±2%左右,比传统的方式的误差±6%有明显的提高。
搜索关键词: 高炉 炉渣 粘度 预报 方法
【主权项】:
一种高炉炉渣粘度预报方法,其特征在于,包括:神经元网络构建步骤,构建的神经元网络结构包含输入层、隐含层和输出层,输入层、隐含层和输出层之间由连接权值连接,隐含层具有阈值,输入层的输入参数为炉渣中各成分的百分含量,输出层的输出参数为不同温度下的炉渣粘度、熔化性温度和脱硫系数;初始化步骤,获取训练数据,并对训练数据、连接权值和阈值进行初始化,所述训练数据包括参考输入参数和参考输出参数;神经元网络自学习步骤,提取一个训练数据,将其中的参考输入参数导入神经元网络,经由输入层、隐含层和输出层输出训练输出参数,比较训练输出参数和该训练数据中的参考输出参数,计算各层的误差和局部梯度,根据误差和局部梯度以设定步长调整连接权值和阈值,根据局部梯度调整设定步长,提取下一个训练数据并重复上述过程,直至所有的训练数据都被使用,保存连接权值和阈值的最终值;炉渣粘度预报步骤,将神经元网络的连接权值和阈值固定在最终值,输入实际的炉渣中各成分的百分含量,输出预报的不同温度下的炉渣粘度、熔化性温度和脱硫系数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宝钢不锈钢有限公司,未经宝钢不锈钢有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210342377.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top