[发明专利]基于平移不变剪切波变换的多模态医学图像融合方法有效

专利信息
申请号: 201210548940.5 申请日: 2012-12-17
公开(公告)号: CN103049895A 公开(公告)日: 2013-04-17
发明(设计)人: 李彬;王雷;田联房 申请(专利权)人: 华南理工大学
主分类号: G06T5/50 分类号: G06T5/50
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 蔡茂略
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于平移不变剪切波变换的多模态医学图像融合方法,包括以下步骤:1)准备待融合的两幅多模态医学图像,利用平移不变剪切波变换分别将两幅图像都分解为低频近似图像和高频细节图像,再将高频细节图像分解为不同的方向子带;2)分别融合两幅图像的低频近似图像和高频细节图像分解的各个方向子带;3)对步骤2)融合后的低频近似图像和高频细节图像分解的各个方向子带,利用逆平移剪切波变换得到融合图像。本发明采用了平移不变剪切波变换的图像融合方法,能方便、经济、高效率地实现多模态医学图像数据的融合,并能充分显示并捕捉到不同模态图像的内部隐含的细节部位的形态信息和功能信息,从而满足医学运用的精确性要求。
搜索关键词: 基于 平移 不变 剪切 变换 多模态 医学 图像 融合 方法
【主权项】:
基于平移不变剪切波变换的多模态医学图像融合方法,其特征在于包括以下步骤:1)准备待融合的两幅多模态医学图像,利用平移不变剪切波变换分别将两幅图像都分解为低频近似图像和高频细节图像,再将高频细节图像分解为不同的方向子带;2)分别融合两幅图像的低频近似图像和高频细节图像分解的各个方向子带:2.1)对低频近似图像,采用基于区域系数绝对值和权重的融合策略进行融合;2.2)对高频细节图像各个方向子带,采用基于子带标准差和概率密度函数权重的融合规则进行融合:a)构建高频子带系数的隐马尔科夫树HMT模型,利用HMT模型训练各子带系数,得到每个子带的标准差和概率密度函数;b)采用基于子带标准差和概率密度函数权重的融合规则确定融合图像的各个高频子带系数;3)对步骤2)融合后的低频近似图像和高频细节图像分解的各个方向子带,利用逆平移剪切波变换得到融合图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210548940.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top