[发明专利]基于RReliefF变量选择的生产过程主导变量精简化软测量方法有效
申请号: | 201210551613.5 | 申请日: | 2012-12-18 |
公开(公告)号: | CN103033213A | 公开(公告)日: | 2013-04-10 |
发明(设计)人: | 李太福;颜克胜;苏盈盈;姚立忠;胡文金;王美丹 | 申请(专利权)人: | 重庆科技学院 |
主分类号: | G01D21/00 | 分类号: | G01D21/00 |
代理公司: | 重庆为信知识产权代理事务所(普通合伙) 50216 | 代理人: | 余锦曦 |
地址: | 401331 重庆市沙坪坝区*** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于RReliefF变量选择的生产过程主导变量精简化软测量方法,其特征在于按如下步骤进行:一,确定与主导变量可能相关的n个原始辅助变量,采集n个原始辅助变量和主导变量取值数据并组成样本集;二,利用RReliefF算法分别计算n个原始辅助变量的权重值;三,组成原始辅助变量序列;四,建模并根据最小均方误差MSE确定最佳辅助变量;五,得到精简化软测量模型。本发明能够在建模效果最好的基础上找出含辅助变量个数最少的辅助变量集对主导变量进行建模,实现对主导变量精简化的软测量。 | ||
搜索关键词: | 基于 rrelieff 变量 选择 生产过程 主导 精简 测量方法 | ||
【主权项】:
一种基于RReliefF变量选择的生产过程主导变量精简化软测量方法,其特征在于按如下步骤进行:步骤一:确定与主导变量可能相关的n个原始辅助变量,采集n个原始辅助变量和主导变量的取值,组成样本集,样本集大小为m,样本大小为n+1;步骤二:利用RReliefF算法分别计算n个原始辅助变量的权重值;步骤三:n个原始辅助变量组成原始辅助变量序列;步骤四:确定最佳辅助变量集,包括以下步骤:第一步,设定循环次数N=n;第二步,随机从样本集中选择p个样本作为训练样本,剩下的m‑p个样本作为检验样本;第三步,根据所述训练样本,利用BP神经网络建立原始辅助变量序列中所包含变量的非线性模型;第四步,将所述检验样本的原始辅助变量值输入至所述非线性模型,得到m‑p个检验样本对应的主导变量预测值;第五步,计算m‑p个检验样本主导变量预测值的均方误差MSE;第六步,删除当前原始辅助变量序列中权重值最小的原始辅助变量,组成新的原始辅助变量序列;设定N=N‑1,判断此时N是否为0:如果N≠0,则回到第三步;如果N=0,则最小的MSE对应原始辅助变量序列即为最佳辅助变量集;步骤五:最佳辅助变量集在步骤四中对应的非线性模型即为精简化软测量模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210551613.5/,转载请声明来源钻瓜专利网。