[发明专利]一种基于多任务学习的多模态脑网络特征融合方法无效
申请号: | 201310002425.1 | 申请日: | 2013-01-05 |
公开(公告)号: | CN103093087A | 公开(公告)日: | 2013-05-08 |
发明(设计)人: | 陈华富;刘风;李俊 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 成都宏顺专利代理事务所(普通合伙) 51227 | 代理人: | 彭立琼;李顺德 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多任务学习的多模态脑网络特征融合方法,包括:对获取的fMRI图像、DTI图像进行预处理;将预处理后的fMRI图像配准到标准的AAL模板;将预处理后的DTI图像做纤维追踪,计算FA值,并通过AAL模板构造结构连接矩阵;分别计算功能连接矩阵和结构连接矩阵每个脑区的聚类系数,作为功能特征和结构特征;将功能特征和结构特征当作两个不同的任务,通过求解多任务学习最优化问题评定最优特征集。本发明的方法利用多个模态互为补充的信息进行同时学习并进行分类,提高了分类的准确率,客服了单任务特征选择方法时不考虑特征之间的关联性,以及只用一个模态的特征进行模式分类可能导致信息量不足的问题。 | ||
搜索关键词: | 一种 基于 任务 学习 多模态脑 网络 特征 融合 方法 | ||
【主权项】:
一种基于多任务学习的多模态脑网络特征融合方法,具体包括如下步骤:步骤1:对获取的fMRI图像、DTI图像进行预处理。步骤2:将预处理后的fMRI图像配准到标准的AAL模板,并计算功能连接矩阵。步骤3:将预处理后的DTI图像配准到AAL模板,计算FA值,构造结构连接矩阵;步骤4:分别计算功能连接矩阵和结构连接矩阵每个脑区的聚类系数,作为功能特征和结构特征;步骤5:将步骤4得到的功能特征和结构特征当作两个不同的任务,通过求解多任务学习最优化问题评定最优特征集,即得到融合后的特征集。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310002425.1/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用