[发明专利]基于深度视频流的实时人脸姿态估计方法有效
申请号: | 201310086776.5 | 申请日: | 2013-03-19 |
公开(公告)号: | CN103198330A | 公开(公告)日: | 2013-07-10 |
发明(设计)人: | 姚莉;肖阳 | 申请(专利权)人: | 东南大学 |
主分类号: | G06K9/66 | 分类号: | G06K9/66 |
代理公司: | 苏州广正知识产权代理有限公司 32234 | 代理人: | 刘述生 |
地址: | 215123 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度视频流的实时人脸姿态估计方法,其步骤包括抽样及训练和实时估计两个阶段,在抽样及训练阶段,获取各个脸部角度的景深图;然后对各个角度的景深图做随机取样,得到训练样本集;再采用监督学习方法做训练,得到分类器,在实时估计阶段,首先提取采集设备输出的深度视频流中的实时人脸景深图并转化为积分图;再对积分图进行随机切片抽样,并利用训练得到的分类器对样本进行分类,得到若干个估计结果;对这些结果剔除异常结果并进行加权平均,得到最终的人脸姿态结果。本发明提供的基于深度视频流的实时人脸姿态估计方法,避免了光照等因素对最终结果的影响,并且拥有良好的实时性和准确性。 | ||
搜索关键词: | 基于 深度 视频 实时 姿态 估计 方法 | ||
【主权项】:
一种基于深度视频流的实时人脸姿态估计方法,其特征在于:步骤包括:抽样及训练阶段和实时估计阶段;在抽样及训练阶段,其步骤包括:获取头部各个角度的人脸景深图,并标注其鼻尖位置和偏转角度;将人脸景深图转换为人脸积分图;在人脸积分图中随机抽样得到训练样本集;采用监督学习方法进行训练,得到分类器;在实时估计阶段,其步骤包括:实时采集得到景深图视频流和普通视频流;获取景深图视频流和普通视频流的视频帧中的脸部位置;针对视频帧中的脸部位置进行随机取样得到待分类样本集;将待分类样本集中所有样本输入分类器,得到姿态估计结果;剔除异常的姿态估计结果;采用加权平均法处理剩下的姿态估计结果,得到最终姿态结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310086776.5/,转载请声明来源钻瓜专利网。
- 上一篇:环柱形电子标签
- 下一篇:客户端好友标签快捷通讯方法及装置