[发明专利]一种基于特征映射的电力系统负荷动特性分类方法有效

专利信息
申请号: 201310112050.4 申请日: 2013-04-02
公开(公告)号: CN103177188A 公开(公告)日: 2013-06-26
发明(设计)人: 顾伟;王元凯;袁晓冬;李群 申请(专利权)人: 东南大学
主分类号: G06F19/00 分类号: G06F19/00
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 杨晓玲
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于特征映射的电力系统负荷动特性分类方法,包括下述步骤:1)对扰动数据进行负荷建模;2)确定负荷动特性分类特征量的映射;3)计算建模组数据和训练组数据之间的关联度;4)估计训练组中每条数据的负荷模型参数;5)指标映射的自适应修正;6)负荷动特性分类;该分类方法利用负荷建模平台中已有的电压扰动数据,形成分类特征量映射数据表,以便对负荷动特性进行快速分类,有利于解决负荷建模过程中的时变性问题。
搜索关键词: 一种 基于 特征 映射 电力系统 负荷 特性 分类 方法
【主权项】:
1.一种基于特征映射的电力系统负荷动特性分类方法,其特征在于,该分类方法包括下述步骤:1)对扰动数据进行负荷建模,具体流程为:11)生成用于负荷建模的电压和功率波形:首先利用电能质量监测装置采集各个典型变电站的扰动数据,所述扰动数据为扰动的电压瞬时值波形和电流瞬时值波形,然后对采集的扰动数据提取基波正序分量,计算三相有功功率、无功功率波形,接着对电压基波正序分量波形和计算得到的三相有功功率、无功功率波形进行降维处理,最后提取降维后的电压基波正序分量波形和三相有功功率、无功功率波形中的扰动波段,作为负荷建模数据;12)将所述步骤11)中得到的负荷建模数据随机分为两组,一组为建模组,另一组为训练组,对所述建模组的负荷建模数据进行负荷建模,将负荷等值为电动机与静态负荷模型并联构成的一个综合负荷模型,采用遗传算法对所述综合负荷模型进行模型参数辨识,从而得到建模组中每条数据的负荷模型参数;2)确定负荷动特性分类特征量的映射:负荷动特性分类的特征量包含扰动数据的采集时间、日类型、季节、负荷水平、温度指标,将上述特征量映射到[0,1]的区间内,对每一条扰动数据形成一个对应的特征向量,所述特征向量由各个特征量映射组成;3)计算建模组数据和训练组数据之间的关联度:根据所述步骤2)得到的每一条扰动数据所对应的特征向量,求解建模组数据与训练组数据之间的关联度,将所述关联度按照进行归一化,得到一个n1×n2的关联度矩阵,其中n1表示建模组数据个数,n2表示训练组数据个数;4)估计训练组中每条数据的负荷模型参数:根据步骤12)辨识得到的建模组中每条数据的负荷模型参数和步骤3)得到的关联度矩阵,计算训练组中每条数据的负荷模型参数;5)指标映射的自适应修正:根据所述步骤4)得到的训练组中每条数据的负荷模型参数,计算训练组中每条数据在对应电压波形的扰动波段下的模型有功、无功输出,然后将所述模型有功、无功输出同所述步骤11)中得到的三相功率波形中的扰动波段进行比较,具体方法为:计算它们之间的欧式距离,得到目标函数J={1nΣk=1n[(p^(k)-p(k))2+(q^(k)-q(k))2]}1/2,]]>其中p(k)、q(k)为模型有功、无功输出,为步骤11)中得到的三相功率波形中的有功、无功扰动波段,k=1,2…,n为每条数据的采样点个数;采用优化算法修正步骤2)中确定的所有负荷动特性分类特征量的映射,使得目标函数J最小,得到各个负荷动特性分类特征量修正后的映射;6)负荷动特性分类:根据步骤5)得到的各个指标修正后的映射,形成新的特征向量,对所述新的特征向量采用模糊聚类方法进行负荷动特性分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310112050.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top