[发明专利]高密度聚乙烯串级聚合反应过程智能检测与收率优化方法有效

专利信息
申请号: 201310117161.4 申请日: 2013-04-07
公开(公告)号: CN103226728A 公开(公告)日: 2013-07-31
发明(设计)人: 徐圆;朱群雄;彭荻;陈彦京;贺彦林;叶亮亮;耿志强;林晓勇;李芳;史晟辉 申请(专利权)人: 北京化工大学
主分类号: G06N3/02 分类号: G06N3/02
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 张水俤
地址: 100029 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 针对高密度聚乙烯(HDPE)串级聚合反应过程工艺复杂、关键质量变量在线测量困难、生产过程操作成本高等问题,本发明采用数据校正、数据挖掘技术开展数据预处理,从生产与分析数据中寻找规律;采用人工神经网络技术,建立智能软测量仪表与聚乙烯产品单耗模型;采用可拓工程技术,优化人工神经网络结构,提高神经网络建模精度,最终形成了一套HDPE反应过程智能检测与收率优化方法。该发明具有响应时间快、建模精度高、推理能力强、管理方便的特点,为保证HDPE生产的安全进行、提高聚合物产品质量、节约生产成本提供了帮助。
搜索关键词: 高密度 聚乙烯 聚合 反应 过程 智能 检测 收率 优化 方法
【主权项】:
一种用于高密度聚乙烯(HDPE)串级聚合反应的智能检测与收率优化方法,其特征在于,所述方法包括:数据预处理过程、样本选取过程、个体神经网络建模过程、和基于可拓聚类的个体神经网络集成过程,其中:所述数据预处理过程为:对现场采集的HDPE聚合反应数据中存在的缺失数据、异常数据和噪声数据进行处理,并将所处理后的数据作为二反应器熔融指数模型和聚乙烯产品单耗模型的训练数据;所述的样本选取过程为:将数据预处理后的训练数据分为用于个体神经网络建模的训练样本和用于神经网络集成的验证样本,并对所划分的训练样本采用Bootstrap方法进行重复抽样,获得带有差异度的个体神经网络的训练样本;所述的个体神经网络建模过程为:采用极限学习机(ELM)算法快速完成个体神经网络的训练;其中,在ELM建模过程中,通过设置个体神经网络的训练标准,以减少随机选取的输入层权值所带来的训练误差;所述的个体神经网络集成过程为:采用可拓聚类算法对个体神经网络的输出进行聚类,并将聚类后获得的差异度较大的个体神经网络进行集成以作为基于ELM神经网络集成(ELM‑E)模型的最终输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京化工大学,未经北京化工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310117161.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top