[发明专利]一种基于GPU的并行演化超网络DNA微阵列基因数据分类系统及方法有效

专利信息
申请号: 201310200205.X 申请日: 2013-05-24
公开(公告)号: CN103258147A 公开(公告)日: 2013-08-21
发明(设计)人: 王进;黄萍丽;孙开伟 申请(专利权)人: 重庆邮电大学
主分类号: G06F19/24 分类号: G06F19/24
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红
地址: 400065 *** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于GPU的并行演化超网络DNA微阵列基因数据分类系统及其方法,涉及智能信息处理技术领域。对DNA微阵列数据进行预处理后,将经过处理后的二进制字符串作为超网络的输入信息,在主机的CPU上对超网络进行初始化,初始化后的超网络转交给GPU设备,将超边库分成多个组,分别在GPU上并行执行基于遗传算法的演化学习,获取先验知识,搜索具有决策能力的最佳超边,演化完成后的超网络利用大量超边共同对输入样本进行分类。本发明在GPU上实现了基于遗传算法的超网络并行演化学习,具有较短的学习和识别时间,系统执行效率较高。超网络能够利用大量具有决策能力的个体共同对样本进行分类,具有较高的系统识别率和泛化能力。
搜索关键词: 一种 基于 gpu 并行 演化 网络 dna 阵列 基因 数据 分类 系统 方法
【主权项】:
一种基于并行演化超网络的DNA微阵列基因数据分类系统,其特征在于,该系统包括:数据预处理单元:对微阵列数据进行信噪比特征选择,提取与微阵列数据分类相关的特征基因,将每个微阵列数据样本进行二值化,处理后数据作为超网络的输入信息;初始化超网络模型:根据给定的经过预处理后DNA微阵列数据,从中抽取一部分作为训练集,根据输入的训练集样本产生超边,形成一个超边库,建立初始化超网络模型;超网络演化学习单元:将初始化超网络的超边库平均分成多个组,分配给GPU的各个线程模块,各线程模块中的线程并行执行基于遗传算法的演化学习过程,完成演化学习后的超网络获取训练集数据的先验知识,得到具有决策能力的最佳超边,超边包含对癌症分类起关键作用的特征基因组合;超网络分类器:超网络利用超边库中具有决策能力的超边与输入的待测DNA微阵列数据样本进行匹配运算,对待测样本的类别进行判断。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310200205.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top