[发明专利]一种多特征联合稀疏表示的目标跟踪方法有效
申请号: | 201310241910.4 | 申请日: | 2013-06-18 |
公开(公告)号: | CN103295242A | 公开(公告)日: | 2013-09-11 |
发明(设计)人: | 胡昭华;吴佑林;徐玉伟;赵孝磊 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | G06T7/20 | 分类号: | G06T7/20;H04N5/14 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 顾进 |
地址: | 210019 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明通过对传统的稀疏编码跟踪器求解稀疏系数方法以及采用的目标特征进行分析和改进,提供一种多特征联合稀疏表示的目标跟踪方法,在光照影响较大、目标出现严重遮挡等复杂场景下保持目标跟踪的稳定性,提高目标跟踪器的精度。本发明包括如下步骤:构建初始字典;目标模板的分块处理;抽取候选粒子;提取目标特征;确定图像特征数和块的类别数;特征的核化处理;将候选样本用字典中所有块进行稀疏表示;核扩展;求解稀疏问题;块的残差计算;构建似然函数;更新模板库。本发明采用多特征联合描述目标,提高了算法的精度和跟踪的稳健性。 | ||
搜索关键词: | 一种 特征 联合 稀疏 表示 目标 跟踪 方法 | ||
【主权项】:
1.一种基于多特征联合稀疏表示的视觉目标跟踪方法,其特征在于,包括以下步骤:(1)跟踪视频序列前n帧,将跟踪得到的前n帧目标作为初始字典;(2)按照预先设定的块的尺寸大小及分块步长,采取重叠分块的方式,对每个目标模块进行分块;重叠分块完成后,字典中的总块数=字典中目标模板的个数×每个目标模板的重叠块数;(3)跟踪过程中,对于新到来的每帧图像,抽取N个粒子,所述抽取粒子的方式如下:基于相邻帧之间目标移动很小的特点,给定一帧新的图像,在对应于上一帧跟踪目标的位置周围进行高斯采样,选取目标的运动仿射变换参数作为状态变量Xt=(xt,yt,θt,st,αt,φt),其中xt,yt分别表示目标在第t帧x,y方向上的坐标,θt表示目标在第t帧的旋转角度,st表示目标在第t帧变化的尺度,αt表示目标在第t帧的高宽比,φt表示目标在第t帧的倾斜角;对抽取的粒子按照步骤(2)的方法进行重叠分块处理;(4)对字典中的块和候选样本中的块进行特征提取;(5)字典模板表示为:
其中J为类别数,每个特征索引k=1,…,K,K为特征个数,
其中mk是第k个特征的维数,pj是第j类模板的个数;X k ∈ R m k × p ]]> (其中p = Σ j = 1 J p j ) ; ]]> (6)对字典模板和候选目标进行核化处理,核化方式为Xk←(Xk)TXk,
其中Xk为字典模板,
为候选样本;(7)候选样本采用与字典模板相同的特征,且其每块用字典中所有块进行多特征联合稀疏表示为:min W 1 2 Σ k = 1 K | | Σ j = 1 J ( y j k - X k w j k ) | | 2 2 + λ Σ j = 1 J | | w j | | 2 ]]> 其中
表示第j类候选样本,
(其中
是与第j类候选样本相对应的表示系数,(8)求解上述稀疏问题得到相应的稀疏系数;(9)利用字典中与候选样本块具有相同类别的块及其表示系数进行候选样本每块的误差重构对于第j类块,重构误差计算如下:residua l j = Σ k = 1 K θ k [ H j k - 2 h j k w ^ j k + ( w ^ j k ) T G j k w ^ j k ] ]]> 其中G j k = φ k ( X j k ) T φ k ( X j k ) , H j k = φ k ( y j k ) T φ k ( y j k ) , { θ k } k = 1 K ( Σ k θ k = 1 ) ]]> 是核权值,用以度量不同特征在最后决策上的置信度大小;(10)将步骤(9)求得的候选样本的每个块的残差residualj进行累加,
再对所有候选样本按照residual进行排序,最小residual对应的候选样本即为最佳样本;(11)联合稀疏表示和子空间学习来实现对字典模板的更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310241910.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种高效胶粘剂
- 下一篇:光场图像传感器、方法和应用