[发明专利]一种基于二维小波分解及视觉词包模型的遥感图像土地利用场景分类方法有效
申请号: | 201310307436.0 | 申请日: | 2013-07-22 |
公开(公告)号: | CN103413142B | 公开(公告)日: | 2017-02-08 |
发明(设计)人: | 唐娉;赵理君;霍连志;冯峥;郑柯 | 申请(专利权)人: | 中国科学院遥感与数字地球研究所 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100101 北京市朝阳区大屯*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于二维小波分解及视觉词包模型的遥感图像土地利用场景分类方法,其步骤建立遥感图像土地利用场景分类训练集;将训练集中的场景图像转换为灰度图像并进行二维小波分解;对转换后的灰度图像和二维小波分解后的子图像分别进行规则格网采样并提取SIFT特征,通过聚类生成各自独立的通用视觉词汇表;对训练集中每一幅图像进行视觉单词映射得到视觉词包特征;将训练集中每幅图像的视觉词包特征和它对应的场景类别编号作为训练数据,运用SVM算法生成分类模型;根据分类模型对任意一幅场景图像分类。本发明很好地解决了已有的基于视觉词包模型的场景分类方法对遥感图像纹理信息考虑不足的问题,可有效提高场景分类的精度。 | ||
搜索关键词: | 一种 基于 二维 分解 视觉 模型 遥感 图像 土地利用 场景 分类 方法 | ||
【主权项】:
一种基于二维小波分解及视觉词包模型的遥感图像土地利用场景分类方法,其特征在于:通过对灰度转换后的灰度遥感土地利用场景图像和二维小波分解后的子图像的尺度不变特征(Scale Invariant Feature Transform,SIFT)向量分别进行聚类,生成各自独立的通用视觉词汇表;对遥感图像土地利用场景分类训练集中每一幅遥感土地利用场景图像所对应的灰度场景图像和二维小波分解后的各子图像分别进行视觉单词映射,分别提取各自的视觉词包特征描述向量,通过向量拼接,得到最终原始遥感土地利用场景图像的视觉词包特征描述;根据遥感图像土地利用场景分类模型,对任意一幅遥感土地利用场景图像的分类结果以类别形式输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院遥感与数字地球研究所,未经中国科学院遥感与数字地球研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310307436.0/,转载请声明来源钻瓜专利网。
- 上一篇:旅游团位置的确定方法
- 下一篇:加速度传感器触发条码扫描器