[发明专利]基于物体整体性和局部性识别的跟踪方法有效
申请号: | 201310317400.0 | 申请日: | 2013-07-25 |
公开(公告)号: | CN103413120A | 公开(公告)日: | 2013-11-27 |
发明(设计)人: | 梁云;王美华;刘福明 | 申请(专利权)人: | 华南农业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 林丽明 |
地址: | 510642 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于物体整体性和局部性识别的跟踪方法,基于局部性信息的识别把各候选区域进行超像素分割,根据物体局部表征的特征,为超像素赋予不同的权值,提出加权相似度量,计算各候选目标区域置信度。基于整体性的识别将物体性度量引入到当前帧的目标物体检测部分,选取色彩、边缘和超像素作为物体性度量的三个线索,给出各自的评分规则,结合这三个线索和基于局部性信息的识别计算置信度对扩展区域中的所有候选目标区域进行评分,根据评分确定目标区域。本发明方法可以较好地描述动态变化的跟踪场景中的目标物体,结合物体性度量使目标区域更好收敛于目标物体,减少背景出现在目标区域中,增强了跟踪的准确率和稳定性。 | ||
搜索关键词: | 基于 物体 整体性 局部性 识别 跟踪 方法 | ||
【主权项】:
一种基于物体整体性和局部性识别的跟踪方法,其特征在于,包括以下步骤:S1.跟踪前m帧图像,以第一帧目标区域为模板,计算新帧的候选目标区域与模板进行相似度量,以相似度最高的为新帧的目标区域,并记录每帧的目标区域;S2.针对前m帧图像以其目标区域为中心向四周扩展得到扩展区域,超像素分割每个扩展区域,以超像素记录目标物体部件信息,作为物体的局部表征,提取各超像素的特征,并收集所有帧的特征构建特征池;S3.基于特征池中的特征集来计算物体的局部表征的权值;S4.设已完成前t帧图像的跟踪,t≥m,计算第t+1帧图像的扩展区域、候选目标区域、及其扩展区域内超像素的特征集,并根据特征池中与扩展区域内的超像素的相似度计算扩展区域内的物体局部表征的置信度;S5.计算各候选目标区域的置信值、各候选目标区域边界附近的边缘密度、各候选目标区域与它直接相邻的包围区域的颜色对比度以及各候选目标区域的超像素跨界程度;S6.结合候选目标区域置信值、边缘密度、颜色对比度和超像素跨界程度计算当前帧的目标区域;S7.更新特征池的特征集;S8.若满足更新物体局部表征的权值条件,根据更新后的特征池内的物体局部表征的权值,实现其权值的更新;S9.执行程序结束判断,当跟踪完所有帧,则结束程序;否则,转到步骤S3进入下一帧图像的跟踪,直到完成整个视频图像序列的跟踪为止。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南农业大学,未经华南农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310317400.0/,转载请声明来源钻瓜专利网。