[发明专利]基于Vector OFDM的双选择性信道的变换域复用方法有效
申请号: | 201310335528.X | 申请日: | 2013-08-02 |
公开(公告)号: | CN103428154A | 公开(公告)日: | 2013-12-04 |
发明(设计)人: | 罗茜倩;张朝阳;付攀玉;钟财军 | 申请(专利权)人: | 浙江大学 |
主分类号: | H04L27/26 | 分类号: | H04L27/26;H04L1/00 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 张法高 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Vector OFDM的双选择信道的变换域复用方法。高速移动环境下的无线通信中,信道经历严重的双选择性衰落。本发明在发送端将符号射到变换域,进行二维IFFT,Vector OFDM调制,得到时频域信号进行发送,在接收端使用Vector OFDM解调,二维FFT变换重回变换域,不考虑噪声,变换域的接收信号等于原发送符号与信道的BEM矩阵的二维FFT的乘积,变换域信号在双选择信道的传输过程中保持正交,因此仅需单抽头的均衡器即可实现信道均衡。此外,需要一定的编码或预编码的结构来对抗信道深衰落。本发明处理复杂度低,同时能获取双选择性信道固有联合多径-多普勒分集增益,有效地对抗信道衰落,提高无线通信可靠性。 | ||
搜索关键词: | 基于 vector ofdm 选择性 信道 变换 域复用 方法 | ||
【主权项】:
1.一种基于Vector OFDM的双选择性信道的变换域复用方法,其特征在于:发送端将经过卷积编码后的发送信号串并变换为矩阵形式,并对该矩阵进行二维IFFT,然后加上二维CP/ZP得到扩展矩阵,利用Vector OFDM调制,将矩阵映射到时频域并发送;接收信号首先利用Vector OFDM解调,然后通过二维FFT得到变换域信号,利用单抽头滤波器做均衡后,得到原发送信号的估计值,最后进行解码;考虑等效基带信号模型,双选择信道采用BEM建模,记发送信号载波频率fc,传输带宽B,采样频率为Ts=1/B,数据块长度N,信号经过双选择信道,接收端接收到的信号是来自不同方向、具有不同时延和多普勒频移的信号簇,发射机与接收机之间相对运动速度v,引起的最大时延扩展为τmax,最大多普勒频移fdmax,信道用连续时变线性滤波器hc(t,τ)和单边功率谱密度为N0的加性白高斯噪声描述,通过傅立叶变换可作分解其中fd为多普勒频移,τ为多径时延,由此将信道响应分解为在时-频域具有不同时延和多普勒频移的子径集,表示为h c _ sum ( t , τ ) = ∫ ∫ H c ( f d , τ ' ) e j 2 π f d t δ ( τ - τ ' ) d f d d τ ' , ]]> Hc(fd,τ′)为信道响应在联合时-频域的扩展系数,记信道的最大时延扩展为τmax,最大多普勒频移为fdmax,即当τ>τmax或|fd|>fdmax时,H(f,τ)≈0,那么NTs为N个符号的数据块周期,利用Δτ=Ts和分别离散化时延扩展和多普勒扩展,得到离散信道响应模型其中H(fd,τ)为离散BEM模型的扩展系数,l∈[0,L],q∈[-Q/2,Q/2],用二维矩阵表示信道扩展系数H = H ( - Q / 2,0 ) · · · H ( - Q / 2 , L ) · · · · · · H ( Q / 2,0 ) · · · H ( Q / 2 , L ) ]]> 其中,矩阵行表示时延扩展,列表示多普勒频移扩展,H中的元素服从广义平稳非相关散射WSSUS模型,即H中的元素相互独立,且服从复高斯分布,H在时延方向上的响应在功率上满足指数衰减,V(H(q,l))∝exp(-0.1·l),在频率扩展方向上信道响应的功率均匀分布,且H经过归一化之后二阶范数为1,信道扩展系数在每一个数据分组块内保持不变,随着数据块的变化而变化;变换域复用方法的具体步骤如下:步骤(1.1)对原发送信息进行卷积编码并交织,然后进行调制,得到待发送的调制符号{Ts0,Ts1…,TsN,…};步骤(1.2)在待发送符号序列中插入导频,通过串并变换器,组成P×K的二维信号矩阵Ts = Ts 0,0 · · · Ts 0 , K - 1 · · · · · · Ts P - 1,0 · · · Ts P - 1 , K - 1 ]]> 导频总数为P1×K1个,均匀散布在矩阵Ts中;步骤(1.3)对原发送矩阵Ts进行二维IFFT,得到矩阵相当于将原发送矩阵Ts看成变换域信号,而s则是将映射到时频域的信号s = s 0,0 · · · s 0 , K - 1 · · · · · · s P - 1,0 · · · s P - 1 , K - 1 ]]> 在后续处理步骤中,行方向映射为时域,列方向映射为频域;步骤(1.4)对s加上二维循环前缀得到扩展矩阵,时域循环前缀长度取信道可能出现的最大时延扩展Ncp_r=L1≥L,频域单边循环前缀长度为最大可能的单边多普勒频移Ncp_c=Q1/2≥Q,在列方向的首尾与行方向的首段加入循环前缀得到大小为(P+Q1)×(K+L1)的扩展矩阵记N=(P+Q1)×(K+L1);步骤(1.5)对进行Vector OFDM调制,将扩展矩阵中的行向量调制到各个子载波上,即在扩展矩阵的列方向上作P+Q1点IFFT变换,得到Ms,第p行为Ms p = 1 P + Q 1 Σ i = 0 P + Q 1 - 1 s ~ i e j 2 π pi P + Q 1 ]]> 式中,表示扩展矩阵的第i行,和Msp均为1×(K+L1)的行向量;步骤(1.6)对Ms进行并串变换,按照行优先整形为1×N的行向量数据块t并发送,有t=[Ms0 Ms1...MsP+Q-1]发送信号t经历双选择信道衰落到达接收端,根据双选择信道的BEM模型,信号经历时延扩展和多普勒扩展,时延扩展数为L,多普勒扩展数为Q,则接收信号为r ( n ) = Σ l = 0 L Σ q = - Q / 2 Q / 2 H ( q , l ) e j 2 π qn N t ( n - l ) + η ( n ) ]]> 式中η(n)为双边带功率为N0/2的AWGN,H(q,l)为双选择信道在多径时延为l且多普勒频移为q的路径的信道响应;步骤(1.7)将接收到的一个数据块的串行信号经过串并变换器,按照行优先组成为大小为(P+Q1)×(K+L1)的接收信号矩阵Mr,以Mri表示Mr的第i行,ηi(k)为噪声矩阵的第i行,考虑每一行的非CP部分的数据,即当k≥L时,有Mr i ( k ) = Σ l = 0 L Σ q = - Q / 2 Q / 2 H ( q , l ) e j 2 π q [ i ( K + L 1 ) + k ] ( P + Q 1 ) ( K + L 1 ) Ms i ( k - l ) + η i ( k ) ]]>≈ Σ l = 0 L Σ q = - Q / 2 Q / 2 H ( q , l ) e j 2 π qi P + Q 1 Ms i ( k - l ) + η i ( k ) ]]> 式中,用了(P+Q1)>>1取近似值;步骤(1.8)对接收信号矩阵Mr进行Vector OFDM解调,在Mr的列方向上作(P+Q1)点FFT变换,得到接收矩阵其第p行为r ~ p = 1 P + Q 1 Σ i = 0 P + Q 1 - 1 Mr i e - j 2 π pi P + Q 1 ]]> 根据步骤(1.4)、步骤(1.5)以及步骤(1.7),得到接收信号矩阵的非CP数据部分,即k≥L1,Q1/2≤p<P+Q1/2时,接收信号有r ~ p ( k ) = Σ l = 0 L Σ p = - Q / 2 Q / 2 H ( q , l ) s ~ ( p - q , k - l ) + η i ( k ) ]]>= Σ l = 0 L Σ p = - Q / 2 Q / 2 H ( q , l ) s ( ( p - Q 1 / 2 - q ) P , ( k - L 1 - l ) K ) + η i ( k ) ]]> 其中算子(·)P和(·)K分别表示对数据做对P和K取模的运算;步骤(1.9)去掉循环前缀得到r,有r ( p , k ) = Σ l = 0 L Σ p = - Q / 2 Q / 2 H ( q , l ) s ( ( p - q ) P , ( k - l ) K ) + η ( p , k ) ]]> 将信道响应的系数扩展矩阵H进行添零扩展,得到P×K的扩展矩阵则上式等效为发送矩阵与信道响应矩阵的循环卷积r = s ⊗ H ~ + η ]]> 其中,表示循环卷积;步骤(1.10)对r做二维FFT,回到变换域信号记其中,为二维傅里叶变换算子,于是信号矩阵s与信道响应矩阵的循环卷积等价于它们变换域信号的点乘Tr=Ts⊙TH+Tη其中,⊙表示矩阵点乘;上式可看作原发送符号矩阵Ts中的每一个符号,各自经历不同的信道响应得到接收信号,发送符号在变换域上是正交的,且响应值TH等于信道扩展系数矩阵在其二维FFT变换网格上的值,在Ns>(L+1)(Q+1)的条件下不是相互独立的;步骤(1.11)利用导频进行信道估计。P1×K1个导频符号均匀散布到原发送信号矩阵Ts中,由于Ts中的符号在传输过程中保持正交,在步骤(1.10)之后得到的变换域信号Tr中,导频位置上的信道响应可直接获得,即对于导频点TH(p,k)=Tr(p,k)/Ts(p,k)然后利用上采样和低通滤波器进行插值,即能得到所有点对应的信道响应,即TH的估计值;步骤(1.12)对变换域信号Tr进行单抽头的均衡,采用ZF均衡技术,得到原发送符号矩阵Ts的估计值每一个数据点只需单抽头的滤波器;步骤(1.13)对进行判决,并且串并变换得到原发送调制符号序列的估计值;步骤(1.14)对调制符号进行解调、解交织与解码,恢复原发送信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310335528.X/,转载请声明来源钻瓜专利网。
- 上一篇:一种单柄恒温水龙头
- 下一篇:一种侧装式V形半球阀