[发明专利]一种消除脉冲噪声的最小均方误差线性均衡方法有效
申请号: | 201310389902.4 | 申请日: | 2013-08-30 |
公开(公告)号: | CN103428130A | 公开(公告)日: | 2013-12-04 |
发明(设计)人: | 杨宗菲;肖悦;李慧蕾;但黎琳;李少谦 | 申请(专利权)人: | 电子科技大学 |
主分类号: | H04L25/03 | 分类号: | H04L25/03;H04L1/00 |
代理公司: | 成都宏顺专利代理事务所(普通合伙) 51227 | 代理人: | 李顺德;王睿 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本明属移动通信技术领域,具体涉及一种消除脉冲噪声的最小均方误差线性均衡方法。本发明通过对最小均方误差的理论知识推导,得到伯努利-高斯模型下脉冲噪声的最小均方误差线性均衡器的抽头系数计算方法,从而在较低复杂度的情况下获取较优的检测性能。 | ||
搜索关键词: | 一种 消除 脉冲 噪声 最小 误差 线性 均衡 方法 | ||
【主权项】:
1.一种消除脉冲噪声的最小均方误差线性均衡方法,其特征在于:其步骤如下所述:S1:接收机第n(n>0)时刻的接收信号为:其中,M为时延路径的总长度,hk(k∈{0,1,...,M-1})为第k条时延路径的衰落系数,xn,n>0为发射机第n时刻的发送符号,并且假设xn=0,n≤0,wn服从均值为0、方差为的高斯分布,gn服从均值为0、方差为的高斯分布,bn服从伯努利分布,且P(bn=1)=p,P(bn=0)=1-p,,P(·)表示括号内的事件发生的概率;S2:根据均值x ‾ n = E ( x n ) = Σ x ∈ β x · P ( x n = x ) , ]]> 方差v n = Σ x ∈ β | x - E ( x n ) | 2 · P ( x n = x ) , ]]> β为调制符号集合,获取每个时刻的vn,其中,E(·)表示随机变量的数学期望;S3:设第n时刻最小均方误差线性均衡器的抽头系数为cn,k,k=-N1,1-N1,...,N2,总长度为N=N1+N2+1,同时,取N个接收符号,其中(·)T表示矩阵或向量的转置)作为最小均方误差线性均衡器的输入,并且假设zn=0,n≤0,则均衡器第n时刻输出对xn的估计符号为:x ^ n = E ( x n ) + Cov ( x n , z n ) Cov ( z n , z n ) - 1 ( z n - H x ‾ n ) , ]]> 其中,Cov(x,y)表示向量x与y的协方差矩阵,即Cov(x,y)=E(xyH)-E(x)E(yH),(·)H表示矩阵或向量的共轭转置,(·)-1表示矩阵的求逆,x ‾ n = x ‾ n - M - N 2 + 1 x ‾ n - M - N 2 + 2 . . . x ‾ n + N 1 T , ]]> S4:为使第n时刻的均衡器输出符号独立于P(xn=x),使vn=1,则第n时刻均衡器输出的估计符号变为:x ^ n = x ‾ n + v n s H [ ( σ w 2 + pσ i 2 ) I N + HV n H H ] - 1 ( z n - H x ‾ n ) , ]]> 其中,s = H 0 1 × ( N 2 + M - 1 ) 1 0 1 × N 1 T , ]]> IN为N×N的单位矩阵,V n = Diag v n - M - N 2 + 1 v n - M - N 2 + 2 . . . v n + N 1 , ]]> Diag(·)表示将长度为l的向量变为l×l的方阵,且向量元素位于方阵的对角线上,并且,假设均衡器的抽头系数向量为c n = c n , N 2 * c n , N 2 - 1 * . . . c n , - N 1 * T , ]]> 则c n = [ ( σ w 2 + p σ i 2 ) I N + HV n H H ] - 1 s ; ]]> S5:假设的概率密度函数服从均值为μn,x,μn,x定义为方差为定义为Cov ( x ^ n , x ^ n | x n = x ) ]]> 的高斯分布,则:μ n , x = c n H ( E ( z n | x n = x ) - H x ‾ n + x ‾ n s ) = x · c n H s ]]>σ n , x 2 = c n H Cov ( z n , z n | x n = x ) c n ]]>= c n H ( σ w 2 I N + HV n H H - v n ss H ) c n ]]>= c n H s ( 1 - s H c n ) ]]> 通过高斯分布的概率密度函数可计算得到;S6:根据x ‾ n = Σ x ∈ β x · P ( x n = x ) , ]]>v n = Σ x ∈ β | x - x ‾ n | 2 · P ( x n = x ) , ]]> 代入P ( x n = x ) = p ( x ^ n | x n = x ) ]]> 可以获得新的第n时刻的和vn值,可以用于更新第n+1时刻的均衡器抽头系数;S7:对每个时刻均衡器输出的估计符号进行解调,恢复出原始的二进制比特信息序列。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310389902.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种叠压式相位牌紧固金具
- 下一篇:3D环境模拟屋