[发明专利]基于隐结构学习的图像摘要生成方法有效
申请号: | 201310410623.1 | 申请日: | 2013-09-10 |
公开(公告)号: | CN103530656B | 公开(公告)日: | 2017-01-11 |
发明(设计)人: | 汤斯亮;邵健;方晗吟;吴飞;庄越挺 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/66 | 分类号: | G06K9/66;G06F17/30;G06T11/60 |
代理公司: | 杭州求是专利事务所有限公司33200 | 代理人: | 张法高 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于隐结构学习的图像摘要生成方法。它包括如下步骤:1)对图片提取HSV颜色直方图特征、视觉单词特征以及方向直方图特征;2)对上一步提取的三种特征进行归一化的预处理并在归一化后将三种特征融合为一个特征向量;3)构造一个带有隐变量的结构支持向量机,从数据库中多次选取训练集合,并利用训练集中不同主题相关的图片集合进行权重系数学习;4)利用上一步学习得到的权重系数,从数据库中选取不同主题相关的图片集,预测出它们的隐含的特征选择偏好并生成与之对应的摘要图片集合。本发明具有更高的信息覆盖率和更低的冗余度可以隐式地学习出不同主题相关的图片集合在特征选择上的不同偏好,比传统的方法取得更好效果。 | ||
搜索关键词: | 基于 结构 学习 图像 摘要 生成 方法 | ||
【主权项】:
一种基于隐结构学习的图像摘要生成方法,其特征在于包括如下步骤:1)对图片提取HSV颜色直方图特征、视觉单词特征以及方向梯度直方图特征;2)对上一步提取的三种特征进行归一化的预处理并在归一化后将三种特征融合为一个特征向量;3)构造一个带有隐变量的结构支持向量机,从数据库中多次选取训练集合,并利用训练集合中不同主题相关的图片集合进行权重系数学习;4)利用上一步学习得到的权重系数,从数据库中选取不同主题相关的图片集合,预测出它们的隐含的特征选择偏好并生成与图片集合对应的摘要图片集合。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310410623.1/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序