[发明专利]一种城市空气质量浓度监测缺失数据的修复方法有效

专利信息
申请号: 201310418833.5 申请日: 2013-09-13
公开(公告)号: CN103514366B 公开(公告)日: 2017-02-08
发明(设计)人: 邹滨;郑忠 申请(专利权)人: 中南大学
主分类号: G06F19/00 分类号: G06F19/00
代理公司: 长沙市融智专利事务所43114 代理人: 欧阳迪奇
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种城市空气质量浓度监测缺失数据的修复方法,首先在城市范围内,获取影响各监测站点空气质量浓度的共性环境因子,基于共性环境因子历史数据和历史空气质量浓度监测数据预测各监测站点(含正常类与故障类站点)未来时刻空气质量浓度;然后将正常工作监测站点的未来时刻监测数据和基于历史数据的预测浓度进行比较,获取未来时刻监测浓度与预测浓度的偏差,并依据空间相关性理论对故障监测站点未来时刻的空气质量监测浓度与基于历史数据的预测浓度的偏差进行估算;最后利用上述步骤的故障监测站点偏差对故障站点基于历史数据预测的未来时刻空气质量浓度结果进行修正,生成故障监测站点未来时刻修复后的空气质量浓度监测数据。
搜索关键词: 一种 城市 空气质量 浓度 监测 缺失 数据 修复 方法
【主权项】:
一种城市空气质量浓度监测缺失数据的修复方法,其特征在于,包括以下步骤:步骤1:收集需进行空气质量浓度监测缺失数据修复的城市中各空气质量浓度监测站点时间超过一年以上的空气质量浓度监测数据和环境因子数据,以这些数据作为变量节点生成贝叶斯网络节点,同时在所有贝叶斯网络节点之间用线进行连接,以此构成贝叶斯网络的完全连接图,然后对各变量节点之间进行关联性分析,并根据关联性分析结果,将完全连接图中不存在关联性的变量之间的对应连接线删除,并基于关联性分析结果筛选出不同监测站点共同包含的环境因子作为后续空气质量浓度预测模型的输入变量;步骤2:以人工神经网络来构建空气质量浓度预测模型,然后将步骤1筛选出的各监测站点具有关联性的共性环境因子作为空气质量浓度预测模型的输入变量,将监测站点历史空气质量浓度监测数据作为期望输出变量来对空气质量浓度预测模型进行训练,训练时通过分别输入不同时刻的各监测站点具有关联性的共性环境因子分别所对应的输出变量与期望输出变量进行对比,根据对比结果来对空气质量浓度预测模型的输入层网络节点与隐含层网络节点之间的权值、隐含层网络节点与输出层网络节点之间的权值、隐含层节点阈值和输出层节点阈值进行修正,当空气质量浓度预测模型的预测值与期望输出变量之间的误差满足精度要求时,则停止空气质量浓度预测模型的训练;然后将未来时刻的各正常工作的监测站点共同相关的环境因子和时间因子构成输入变量,并输入到构建完成的空气质量浓度预测模型中,进行监测站点未来时刻空气质量浓度值的预测;步骤3:将步骤2所得到的正常工作的监测站点未来时刻空气质量浓度的预测浓度值与该未来时刻的空气质量监测浓度进行比较,并计算求得两者的偏差;然后通过对该偏差进行空间插值,求得未来时刻故障监测站点的空气质量浓度的预测值与该时刻的空气质量监测浓度修复值之间的偏差,再通过空气质量浓度预测模型求得故障监测站点未来时刻空气质量浓度的预测值,加上未来时刻故障监测站点的空气质量浓度的预测值与该时刻的空气质量监测浓度修复值之间的偏差,即可获得故障监测站点未来时刻的空气质量浓度监测缺失数据的修复值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310418833.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top