[发明专利]最优模糊网络的工业熔融指数软测量仪表及方法有效
申请号: | 201310432289.X | 申请日: | 2013-09-22 |
公开(公告)号: | CN103675005A | 公开(公告)日: | 2014-03-26 |
发明(设计)人: | 刘兴高;张明明;李见会 | 申请(专利权)人: | 浙江大学 |
主分类号: | G01N25/04 | 分类号: | G01N25/04;G05B13/04 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 周烽 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种最优模糊网络的工业熔融指数软测量仪表及方法。该方法通过引入支持向量机对原有的模糊神经网络进行优化,解决了模糊神经网络构建过程中参数难设定的问题。在本发明中,现场智能仪表、控制站与DCS数据库连接,软测量值显示仪包括最优模糊网络的工业熔融指数软测量模型,DCS数据库与软测量模型的输入端连接,所述最优模糊网络的工业熔融指数软测量模型的输出端与熔融指数软测量值显示仪连接。最后,本发明具有在线测量、计算速度快、抗噪声能力强、推广性能好的特点。 | ||
搜索关键词: | 最优 模糊 网络 工业 熔融指数 测量 仪表 方法 | ||
【主权项】:
1.一种最优模糊网络的工业熔融指数软测量仪表,包括用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库以及熔融指数软测量值显示仪,所述现场智能仪表、控制站与DCS数据库连接,其特征在于:所述软测量仪表还包括最优模糊网络的工业熔融指数软测量模型,所述DCS数据库与所述最优模糊网络的工业熔融指数软测量模型的输入端连接,所述最优模糊网络的工业熔融指数软测量模型的输出端与熔融指数软测量值显示仪连接,所述最优模糊网络的工业熔融指数软测量模型包括:数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,使得训练样本的均值为0,方差为1,该处理采用以下算式过程来完成:计算均值:TX ‾ = 1 N Σ i = 1 N TX i - - - ( 1 ) ]]>计算方差:σ x 2 = 1 N - 1 Σ i = 1 N ( TX i - TX ‾ ) - - - ( 2 ) ]]>标准化:X = TX - TX ‾ σ x - - - ( 3 ) ]]>其中,TXi为第i个训练样本,N为训练样本数,
为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2x表示训练样本的方差。模糊神经网络模块,对从数据预处理模块传过来的输入变量,进行模糊推理和建立模糊规则。对从数据预处理模块传过来的经过预处理过的训练样本X进行模糊分类,得到模糊规则库中每个模糊聚类的中心和宽度。设第p个标准化后的训练样本Xp=[Xp1,…,Xpn],其中n是输入变量的个数。设模糊神经网络有R个模糊规则,为了求得每个模糊规则对于训练样本Xp的每个输入变量Xpj,j=1,…,n,下面的模糊化方程将求出其对第i个模糊规则的隶属度:M ij = exp { - ( X pj - m ij ) 2 σ ij 2 } - - - ( 4 ) ]]>其中mij和σij分别表示第i个模糊规则的第j个高斯成员函数的中心和宽度,由模糊聚类求得。设标准化后的训练样本Xp对模糊规则i的适应度为μ(i)(Xp),则μ(i)(Xp)的大小可由下式决定:μ ( i ) ( X p ) = Π j = 1 n M ij ( X p ) = exp { - Σ j = 1 n ( X pj - m ij ) 2 σ ij 2 } - - - ( 5 ) ]]>求得输入训练样本对于每个规则的适应度之后,模糊神经网络对模糊规则输出进行推导以得到最后的解析解。在常用的模糊神经网络结构中,每个模糊规则推导的过程都可以表示为如下:首先求得训练样本中所有输入变量的线性乘积和,然后用此线性乘积和与规则的适用度μi(Xp)相乘,得到最终的每条模糊规则的输出。模糊规则i的推导输出可以表示如下:f ( i ) = μ ( i ) ( X p ) × ( Σ j = 1 n a ij × X pj + a i 0 ) - - - ( 6 ) ]]>y ^ p = Σ i = 1 R f ( i ) + b = Σ i = 1 R [ μ i ( X p ) × ( Σ j = 1 n a ij × X pj + a i 0 ) ] + b - - - ( 7 ) ]]>式中,f(i)为第i条模糊规则的输出,
是模糊神经网络模型对第p个训练样本的预测输出,aij,j=1,…,n是第i条模糊规则中第j个变量的线性系数,ai0是第i条模糊规则中输入变量线性乘积和的常数项,b是输出偏置量。支持向量机优化模块,在式(7)中,输入变量线性乘积和中的参数的确定是模糊神经网络使用中用到的一个主要问题,这里我们采用把原有的模糊规则推导输出形式转换为支持向量机优化问题,再使用支持向量机进行线性优化,转换过程如下:y ^ p = Σ i = 1 R f ( i ) + b ]]>= Σ i = 1 R [ μ ( i ) ( X p ) × ( Σ j = 1 n a ij × X pj + a i 0 ) ] + b - - - ( 8 ) ]]>= Σ i = 1 R Σ j = 0 n a ij × μ ( i ) ( X p ) × X pj + b ]]>其中Xp0为常数项且恒等于1。令φ → ( X p ) = [ μ ( 1 ) × X p 0 , . . . , μ ( 1 ) × X pn , . . . . . . , μ ( R ) × X p 0 , . . . , μ ( R ) × X pn ] - - - ( 9 ) ]]>其中,
表示原训练样本的转化形式,即把原来的训练样本转换为如上式形式,作为支持向量机的训练样本:S = { ( φ → ( X 1 ) , y 1 ) , ( φ → ( X 2 ) , y 2 ) , . . . , ( φ → ( X N ) , y N ) , } - - - ( 10 ) ]]>其中y1,…,yN是训练样本的目标输出,取S作为新的输入训练样本集合,那么原有问题可以转化为如下的支持向量机对偶优化问题:R ( ω , b ) = γ 1 N Σ p = 1 N L ϵ ( y p , f ( X p ) ) + 1 2 ω T ω - - - ( 11 ) ]]>其中yp是输入训练样本Xp的目标输出,ω是支持向量机超平面的法向量,f(Xp)是对应于Xp的模型输出,γ是支持向量机的惩罚因子,R(ω,b)是优化问题的目标函数,N是训练样本数,Lε(yp,f(Xp))表达式如下:
其中ε是优化问题的误差容限,接下来使用支持向量机求得模糊神经网络的模糊规则最优推导线性参数和对偶优化问题的预报输出:a ij = Σ k = 1 N ( α k * - α k ) μ ( i ) X kj = Σ k ∈ SV N ( α k * - α k ) μ ( i ) X kj i = 1 , . . . , R ; j = 0 , . . . , n - - - ( 13 ) ]]>y ^ p = Σ k = 1 N ( α k * - α k ) < φ → ( X ) , φ → ( X k ) > + b - - - ( 14 ) ]]>其中αk,
(k=1,…,N)分别是yp-f(Xp)大于0和小于0时对应的拉格朗日乘子,
即为对应于第p个标准化后的训练样本Xp的MI预报值。所述最优模糊网络的工业熔融指数软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310432289.X/,转载请声明来源钻瓜专利网。
- 上一篇:智能化超细铝粉生产系统
- 下一篇:恒拉力条件下的周期轮浸腐蚀试验方法及其设备