[发明专利]基于二维投射的煤矿设备状态识别和预警方法有效
申请号: | 201310464597.0 | 申请日: | 2013-10-08 |
公开(公告)号: | CN103487275A | 公开(公告)日: | 2014-01-01 |
发明(设计)人: | 程晓涵;孟国营;汪爱明;李伟;翟宇;张海涛;贺凯;李栋;刘剑;杜岩 | 申请(专利权)人: | 中国矿业大学(北京) |
主分类号: | G01M99/00 | 分类号: | G01M99/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100083 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种煤矿设备状态识别和预警方法,涉及煤矿主扇风机和提升机。本发明的诊断方法是从设备监测监控系统中提取振动信号,经数据分析和计算得出24个特征指标用以描述设备运行状态,利用二维投射方法将所述24个特征指标投射到二维空间,得到投射值的分布特征。由于所述特征指标的投射值分布对于某一固定设备在正常运转状态下是固定不变的,并以此建立特征评价指标体系,那么通过观察待评估的某一时刻的24个特征指标的投射分布与所述特征评价指标体系相对比,即可判断所述某一时刻设备运行状态是否存在异常,进而提醒工作人员采取相应的维护措施。 | ||
搜索关键词: | 基于 二维 投射 煤矿 设备 状态 识别 预警 方法 | ||
【主权项】:
1.一种煤矿设备状态识别和预警方法,其特征在于,该方法包括以下步骤:(1)在煤矿设备关键部位——轴承的水平、垂直、轴向三个方向上安装加速度振动传感器,不间断地监测设备运行过程中的振动数据并将所述振动数据发送至后端接收和处理系统,并存入相关数据文件;(2)对加速度振动传感器中提取的振动数据{ai,i=1,2,...,n}进行处理,具体步骤为:①对所述振动数据{ai,i=1,2,...,n}进行傅里叶变换得到{xi,i=1,2,...,n};②按下列公式计算出能够描述设备运行状态的24特征指标向量X*={xav,xp,xrms,xr,Dx,xp-p,α,β,Cf,Sf,If,CLf,Kv,favg,fb,fbb,fv,frv,S,Er1,Er2,,Er3,Er4,Er5}绝对均值:x av = 1 n Σ i = 1 n | x i | ; ]]> 峰值:xp=max|xi|;有效值(均方根值):x rms = 1 n Σ i = 1 n x i 2 ; ]]> 方根幅值:x r = ( 1 n Σ i = 1 n | x i | ) 2 ; ]]> 方差:D x = 1 n Σ i = 1 n ( x i - x av ) 2 ; ]]> 峰-峰值:xp-p=max(xi)-min(xi);偏态指标:α = 1 6 n Σ i = 1 n ( x i - x av D x ) 3 ; ]]> 峭度指标:β = n 24 [ Σ i = 1 n ( x i - x av D x ) 4 - 3 ] ; ]]> 峰值指标:C f = x p x rms ; ]]> 波形指标:S f = x rms x av ; ]]> 脉冲指标:I f = x p x rms ; ]]> 裕度指标:CL f = x p x r ; ]]> 变异系数:K v = D x x av ; ]]> 重心频率(平均频率):f avg = ∫ 0 ∞ fp ( f ) df ∫ 0 ∞ p ( f ) df ; ]]> 均方频率:f b = ∫ 0 ∞ f 2 p ( f ) df ∫ 0 ∞ p ( f ) df ; ]]> 均方根频率:f bb = ( ∫ 0 ∞ f 2 p ( f ) df ∫ 0 ∞ p ( f ) df ) 1 / 2 ; ]]> 频率方差:f v = ∫ 0 ∞ ( f - f avg ) 2 p ( f ) df ∫ 0 ∞ p ( f ) df ; ]]> 频率标准差:f rv = [ ∫ 0 ∞ ( f - f avg ) 2 p ( f ) df ∫ 0 ∞ p ( f ) df ] 2 ; ]]> 谱峰稳定指数:S = Σ i = 1 n / 2 { f i 2 · P ( f i ) } Σ i = 1 n / 2 P ( f i ) / Σ i = 1 n / 2 { f i 4 · P ( f i ) } Σ i = 1 n / 2 f i 2 · P ( f i ) ; ]]> 第一频带相对能量:E r 1 = ∫ 0 B f p ( f ) df / ∫ 0 F s p ( f ) df ; ]]> 第二频带相对能量:E r 2 = ∫ B f 2 B f p ( f ) df / ∫ 0 F s p ( f ) df ; ]]> 第三频带相对能量:E r 3 = ∫ 2 B f 3 B f p ( f ) df / ∫ 0 F s p ( f ) df ; ]]> 第四频带相对能量:E r 4 = ∫ 3 B f 4 B f p ( f ) df / ∫ 0 F s p ( f ) df ; ]]> 第五频带相对能量:E r 5 = ∫ 4 B f 5 B f p ( f ) df / ∫ 0 F s p ( f ) df ; ]]> 所述24个特征指标计算公式中f表示信号的频率,p(f)表示信号的功率谱,Bf表示1/5频段值,Fs表示最高频率值;(3)对24特征指标向量X*进行处理实现设备运行状态的识别和故障预警,具体步骤为:①24特征指标向量X*的训练样本的预处理:设备某一工作状态,所述状态可为正常状态或某一典型故障状态,用{qi,i=1,2,...,s}表示,所述某一状态下的24特征指标向量X*构成训练样本空间可以用p×n的矩阵X*={x*(i,j)|i=1,2,...,p;j=1,2,...,n}来表示,其中,x*(i,j)为第j个状态样本的第i个特征指标,p表示样本空间的维数,即特征指标的数量,n表示训练样本的个数;为消除各特征指标量纲的影响并统一其值的波动范围,需要对样本数据进行归一化处理:
其中,xmax(j),xmin(j)分别表示原始数据x*(i,j)第i个指标的最大值和最小值,X={x(i,j)|i=1,2,...,p;j=1,2,...,n}表示X*={x*(i,j)|i=1,2,...,p;j=1,2,...,n}归一化处理后的序列;②将24特征指标向量进行投射,分析其投射值分布特点:所述投射就是把p维数据{x(i,j)|i=1,2,...,p;j=1,2,...,n}转化为以矩阵a={a(1),a(2),a(3),...,a(p)}为投射方向的一维投射值z(j):z ( j ) = Σ i = 1 p a ( i ) x ( i , j ) , j = 1,2 , . . . , n , ]]> 其中a表示单位长度向量,然后按照投射值{z(j)|j=1,2,...,n}的分布特点进行归类;③为了将所述步骤(3)②中各典型设备状态下的投射值区域分开来,构造投射目标函数以寻求最佳的投射方向矩阵A=[a1,a2,...,am](其中包含最优投射方向ab),投射目标函数指标可表达成:Q(a)=SzDz,其中,Sz用投射值z(i)标准差来描述类间距离;Dz用投射值z(i)局部密度来描述类内密度,即S z = Σ i = 1 n ( z ( i ) - E ( z ) ) 2 n - 1 , ]]>D z = Σ i = 1 n Σ j = 1 n ( R - r ( i , j ) ) · u ( R - r ( i , j ) ) , ]]> 其中,E(z)为序列z={z(i)|i=1,2,...,n}的平均值;R为局部密度的窗口半径,它的取值范围一般为:
p为特征指标的数量;r(i,j)表示样本之间的距离,r(i,j)=|z(i)-z(j)|;单位阶跃函数u ( t ) = 1 , t ≥ 0 0 , t ≥ 0 , ]]> 最大化目标函数:Max:Q(a)=Sz·Dz,约束条件:Σ j = 1 p a 2 ( j ) = 1 , ]]> 在最佳投射方向矩阵A=[a1,a2,...,am]下,所述各典型设备状态下的24特征指标向量投射值wi(i=1,2,...,s)成带状分布,所述带状分布体系即形成了设备状态评价指标体系W;④对于设备某一未知状态q′进行评估,对所述未知状态q′的振动数据同样经所述步骤(1)(2)生成24特征指标向量,然后将所述24特征指标向量在所述步骤(3)③中得到的最佳投射方向矩阵A=[a1,a2,...,am]下进行投射,得到投射值w′,根据所述投射值w′的分布位置便可判断出设备状态识别结果为q′,即判断出煤矿设备是否存在异常,并同时识别出所述异常属于何种故障类型,那么根据所述状态识别结果向工作人员提出故障预警。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学(北京),未经中国矿业大学(北京)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310464597.0/,转载请声明来源钻瓜专利网。