[发明专利]一种针对输入时滞的2D混杂控制器设计方法有效
申请号: | 201410100969.6 | 申请日: | 2014-03-18 |
公开(公告)号: | CN103901773B | 公开(公告)日: | 2017-05-03 |
发明(设计)人: | 王立敏;高福荣;姚科;莫胜勇 | 申请(专利权)人: | 广州市香港科大霍英东研究院 |
主分类号: | G05B13/00 | 分类号: | G05B13/00 |
代理公司: | 广州嘉权专利商标事务所有限公司44205 | 代理人: | 谭英强 |
地址: | 511458 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种针对输入时滞的2D混杂控制器设计方法,包括A、构建具有输入时滞的二维状态空间模型;B、根据时变时滞的大小,将构建的二维状态空间模型转换为二维时滞增广切换模型;C、根据二维时滞增广切换模型设计出满足控制律的控制器;D、采用线性矩阵不等式的形式对控制器的增益进行求解。本发明基于分段的方法,采用了同时包括大时滞情况和小时滞情况的二维时滞增广切换模型来设计控制器,使系统即使受大于一个周期的未知时滞的影响仍能保持稳定,稳定性较高,同时还具有计算简单、跟踪快和控制性能良好的优点。本发明可广泛应用于工业控制器设计领域。 | ||
搜索关键词: | 一种 针对 输入 混杂 控制器 设计 方法 | ||
【主权项】:
一种针对输入时滞的2D混杂控制器设计方法,其特征在于:包括:A、构建具有输入时滞的注塑过程二维状态空间模型,所述注塑过程二维状态空间模型如下:ΣP-delay:{x(t+1,k)=(A+Δa(t,k))x(t,k)+(B+Δb(t,k))u(t-d(t),k)y(t,k)=Cx(t,k)x(t,k)=x0,k;-dM≤t≤0;k=1,2,...,]]>其中,t代表时间,k代表运行的周期,X0,k是第kth批次的初始状态;x(t,k)∈Rn,y(t,k)∈Rl,u(t‑d(t),k)∈Rm分别代表系统在t时刻第kth批次的状态、输出和输入,Rl、Rm、Rn分别代表的是l、m、n维的向量空间,沿时间方向的时变时滞d(t)满足dm≤d(t)≤dM,dm、dM分别是时滞的上下界;A,C及B均是已知的实常数矩阵,△a(t,k)和△b(t,k)是系统模型参数不确定矩阵且满足[△a(t,k) △b(t,k)]=E△(t,k)[F Fb],△T(t,k)△(t,k)≤I,0≤t≤T,k=1,2,…,E、F和Fb是已知的实常数矩阵,I是适维单位矩阵;B、根据时变时滞d(t)的大小,将构建的注塑过程二维状态空间模型转换为注塑过程二维时滞增广切换模型,所述注塑过程二维时滞增广切换模型如下:Σ2D-P-delay:{xe(t+1,k)=(A‾1+Δ‾a(t,k))xe(t,k)+A‾2xe(t+1,k-1)+(B‾+Δ‾b(t,k))r(t-dσ(t)(t),k)+Hω(t,k)z(t,k)=Δe(t,k)=Gxe(t,k),]]>其中,为系统的状态,G=[0 I],ω(t,k)=(△a(t,k)‑△a(t,k‑1))x(t,k‑1)+(△b(t,k)‑△b(t,k‑1))u(t‑d(t),k‑1),可看作外界干扰,为分段常值函数,也叫切换信号:σ(t)=1表示系统在小时滞情况下运行,σ(t)=2表示系统在大时滞情况下运行;C、根据注塑过程二维时滞增广切换模型设计出满足控制律r(t‑dσ(t)(t),k)的注塑过程控制器,所述控制律r(t‑dσ(t)(t),k)如下:∑2D‑C‑delay:r(t‑dσ(t)(t),k)=Kσ(t)3xe(t‑dσ(t)(t),k‑1)+Kσ(t)2xe(t+1,k‑1)+Kσ(t)1xe(t,k),其中,Kσ(t)3、Kσ(t)2和Kσ(t)1为控制器增益且Kσ(t)3=Yσ(t)3L‑1,Kσ(t)2=Yσ(t)2L‑1,Kσ(t)1=Yσ(t)1L‑1,Yσ(t)1、Yσ(t)2和Yσ(t)3为适维待求矩阵;D、采用线性矩阵不等式的形式对注塑过程控制器的增益Kσ(t)3、Kσ(t)2和Kσ(t)1进行求解。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州市香港科大霍英东研究院,未经广州市香港科大霍英东研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410100969.6/,转载请声明来源钻瓜专利网。
- 上一篇:多聚谷氨酰胺致病机理的分析方法
- 下一篇:一种简易升降停车设备