[发明专利]一种利用相关系数进行相关性分析的贝叶斯分类数据挖掘方法在审
申请号: | 201410143640.8 | 申请日: | 2014-04-10 |
公开(公告)号: | CN103942286A | 公开(公告)日: | 2014-07-23 |
发明(设计)人: | 张永军;杨利娟 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 公开了一种利用相关系数进行相关性分析的贝叶斯分类数据挖掘方法。初步选定一些可能与目标因子具有相关性的预测因子,对预测因子和目标因子进行模型训练,再对训练结果利用相关系数进行相关性分析,如果预测因子和目标因子相关性不大或者不相关,可以立即终止贝叶斯分类算法,不再进行后面的精度评估等步骤,以便用户保留有关预测因子,去掉无关预测因子或者重新选定预测因子;如果预测因子和目标因子相关性很大或者相关时,再在此基础上进行精度评估,评价贝叶斯分类算法的好坏。通过在分类模型的基础上进行相关性判断,不仅可以使分类预测结果更加可靠,而且可以节约资源,提高算法的效率。 | ||
搜索关键词: | 一种 利用 相关系数 进行 相关性 分析 贝叶斯 分类 数据 挖掘 方法 | ||
【主权项】:
一种利用相关系数进行相关性分析的贝叶斯分类数据挖掘方法,其包括以下步骤:初步选定一些可能与目标因子具有相关性的预测因子,对预测因子和目标因子进行模型训练,再对训练结果利用相关系数进行相关性分析,如果预测因子和目标值相关性不大或者不相关,可以立即终止贝叶斯分类算法,不再进行后面的精度评估等步骤,以便用户保留有关预测因子,去掉无关预测因子或者重新选定预测因子;如果预测因子和目标因子相关性很大或者相关时,再在此基础上进行精度评估,评价贝叶斯分类算法的好坏。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410143640.8/,转载请声明来源钻瓜专利网。