[发明专利]一种基于无监督特征选择的分类方法有效
申请号: | 201410166747.4 | 申请日: | 2014-04-22 |
公开(公告)号: | CN103942568B | 公开(公告)日: | 2017-04-05 |
发明(设计)人: | 郑宝芬;苏宏业;罗林 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 杭州求是专利事务所有限公司33200 | 代理人: | 邱启旺 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于无监督特征选择的分类方法,将高维数据表述成相似图形式,用信息理论度量学习(ITML)得到样本点之间的距离,建立原高维数据的相似矩阵;接着对相似矩阵和其对应的对角矩阵,采用SM算法完成原始样本集到特征向量空间的映射;然后通过学习稀疏系数向量和MCFS得分,得到原始样本集中每个属性的权重系数,并选出最能表达原样本信息的属性;最后用支持向量机对特征选择后的数据建立分类模型,对驾驶员的疲劳状况进行预测。本方法在建立分类模型前,对高维数据在保留数据簇结构的情况下进行特征选择,从而解决了维度灾难给数据分类带来的负面影响。 | ||
搜索关键词: | 一种 基于 监督 特征 选择 分类 方法 | ||
【主权项】:
一种基于无监督特征选择的分类方法,其特征在于,包括以下步骤:(1)采集疲劳驾驶实验中志愿者的脑电图,对脑电图数据进行预处理,并进行特征抽取和归一化,得到样本数据集;(2)将步骤(1)得到的样本数据集表述成相似图形式,并采用信息理论度量学习得到样本数据集中不同样本点之间的距离,即建立样本数据集的相似矩阵W,其中,xi、xj代表两个不同的样本数据,M是一个d×d维的半正定矩阵,d为输入空间的维度,WM(xi,xj)为xi、xj两个样本点之间的距离;(3)采用SM算法,利用样本数据集的相似矩阵W和其对应的对角矩阵D得到相似图的非规格拉普拉斯矩阵L,求解L的广义特征向量,取前k个记为Y=[y1,…,yk],完成样本数据集到特征向量空间的映射;(4)对样本数据集的每个维度的重要性,首先计算各维度沿每个特征向量的相关系数,然后通过MCFS得分,得到每个维度对于样本数据集的相关系数;(5)将步骤(4)得到的每个维度对于样本数据集的相关系数从大到小进行排序,选择相关系数较大的维度,完成样本数据集的特征选择;(6)用支持向量机对步骤(5)特征选择后的数据建立分类模型;(7)采集驾驶员的脑电数据,将其进行步骤(1)到步骤(5)所述的处理后,输入步骤(6)建立的分类模型,判断其是否处于疲劳状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410166747.4/,转载请声明来源钻瓜专利网。