[发明专利]一种基于高斯差分多尺度边缘融合的车辆检测方法有效
申请号: | 201410181851.0 | 申请日: | 2014-04-30 |
公开(公告)号: | CN103927526B | 公开(公告)日: | 2017-02-15 |
发明(设计)人: | 赵祥模;惠飞;穆柯楠;杨澜;史昕;马峻岩 | 申请(专利权)人: | 长安大学 |
主分类号: | G06T7/13 | 分类号: | G06T7/13;G06T7/187;G06T7/155;G06K9/00 |
代理公司: | 西安通大专利代理有限责任公司61200 | 代理人: | 徐文权 |
地址: | 710064 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于高斯差分多尺度边缘融合的车辆检测方法,首先对图像进行高斯尺度变换,得到四幅相邻尺度的高斯图像。然后对这四个尺度相邻的高斯图像进行相邻尺度图像之间差分运算,得到三个不同尺度的高斯差分图像并对其采用Sobel算子进行边缘检测,再进行尺度向上搜索的边缘融合,得到尽可能多的车辆边缘信息同时去除大量背景边缘,再对融合的边缘图像进行膨胀、闭运算、孔洞填充等一系列形态学操作,得到代表车辆的连通域图像,最后根据连通域的位置信息在原图像中确定出车辆所在位置的外界矩形,实现车辆检测。本发明对多尺度图像进行处理,降低了算法复杂度,减少了计算量,能有效提高车辆检测的效率,得到较好的检测结果。 | ||
搜索关键词: | 一种 基于 高斯差分多 尺度 边缘 融合 车辆 检测 方法 | ||
【主权项】:
一种基于高斯差分多尺度边缘融合的车辆检测方法,其特征在于,包括以下步骤:步骤一,采集某路段交通视频,对视频中的一幅图像灰度化得到原始灰度图像,再进行高斯金字塔多尺度变换,利用四个相邻尺度参数的高斯核与图像进行卷积运算,得到四幅相邻尺度的高斯图像Gl,其中l表示四个相邻尺度,l=1,2,3,4;步骤二,对这四幅相邻尺度的高斯图像Gl进行相邻尺度图像差分运算,得到三幅相邻尺度的高斯差分图像Dl,三幅高斯差分图像的尺度分别为:σ,2×σ,2×2×σ;其中l=1,2,3,σ为平滑参数;步骤三,对步骤二得到的三幅高斯差分图像Dl采用Sobel算子进行边缘检测,计算差分图像中每个像素点在水平、垂直两个方向上的梯度幅值,并设置阈值T1,保留梯度幅值大于阈值T1的像素点,此像素点为边缘点并设其灰度值为255,否则设为0,得到对应三个相邻尺度的边缘检测二值图El,其中l=1,2,3;步骤四,对对应三个不同尺度的三幅二值边缘图El进行多尺度边缘融合,其中,l=1,2,3,具体步骤为:(1)在四个相邻尺度l下搜索三幅相邻尺度的高斯差分图像Dl的边缘图像El中的每一个边缘像素,由于相邻尺度间的边缘位移不超过1,在尺度为l‑1的差分高斯图像Dl‑1的边缘图像中搜索相应的面积为3×3的区域,该区域中出现的所有边缘点均标记为边缘点,得到候选边缘图像;(2)l=l‑1;若l>1则跳转至步骤(1),否则执行步骤(3);(3)l=1时,边缘图像El则为融合后的边缘图像;步骤五,对步骤四得到的融合后的边缘图像采用膨胀模板进行形态学处理,设定阈值T2,连接像素间距小于阈值T2的边缘点或线,得到连续边缘;再进行形态学闭运算,弥合边缘图像的孔洞和裂缝,得到进一步闭合的边缘图像;最后经过图像填充将闭合区域的内部空洞填充,形成完整的连通区域;步骤六,对连通区域进行标记,计算每一个连通区域的面积,设置面积阈值T3,剔除面积小于面积阈值T3的连通区域;根据连通区域坐标确定各连通区域的最小外接矩形的坐标,最后在原始灰度图像中显示出来,完成对车辆的检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410181851.0/,转载请声明来源钻瓜专利网。
- 上一篇:粘合剂、包括粘合剂层的偏振板和液晶显示器
- 下一篇:一种大理石高强度复合胶