[发明专利]驱动输送皮带的高压电机振动状态在线监测方法有效
申请号: | 201410363958.7 | 申请日: | 2014-07-29 |
公开(公告)号: | CN105318961B | 公开(公告)日: | 2019-05-31 |
发明(设计)人: | 蔡正国 | 申请(专利权)人: | 上海宝钢工业技术服务有限公司 |
主分类号: | G01H17/00 | 分类号: | G01H17/00 |
代理公司: | 上海天协和诚知识产权代理事务所 31216 | 代理人: | 沈国良 |
地址: | 201900 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种驱动输送皮带的高压电机振动状态在线监测方法,本方法在高压电机各轴承座设置用于输出振动信号的振动传感器并采集振动特征信号;分别建立高压电机定子异常引起的电磁振动分类指标、提取气隙不均引起的电磁振动故障特征、建立转子导条异常引起的电磁振动分类指标、提取不平衡引起的机械振动故障特征、建立滚动轴承异常产生的机械振动分类指标以及提取高压电机安装、调整不良引起的机械振动故障特征;根据所采集的振动特征信号分别经一定的运算得到监测高压电机故障的指标并作出相应预警。本方法建立高压电机振动诊断的分类指标,准确预报高压电机的电气和机械失效故障,把握高压电机运行状态和劣化趋势,确保安全运行。 | ||
搜索关键词: | 高压电机 分类指标 电磁振动 故障特征 机械振动 输送皮带 在线监测 振动特征 振动状态 滚动轴承 振动传感器 采集 驱动 确保安全 失效故障 输出振动 运行状态 振动诊断 转子导条 准确预报 轴承座 劣化 气隙 运算 预警 监测 | ||
【主权项】:
1.一种驱动输送皮带的高压电机振动状态在线监测方法,其特征在于本方法包括如下步骤:步骤一、在高压电机各轴承座上设置用于输出振动信号的振动传感器,采集振动传感器输出的原始振动信号Xi,对原始振动信号Xi作频谱分析,提取高压电机的振动特征信号,原始振动信号的总振动值A由振动信号的离散值xi(i=1,2,……,N)求得,
步骤二、建立高压电机定子异常引起的电磁振动分类指标,定子故障会在电源频率的2倍频处产生强烈振动,对于原始振动信号Xi,经FFT变换得到Xi(t),其中i=1、2,以及2倍电源频率处的振动分量Xp(t),按照公式(1)重新构成高压电机定子信号S(t),
对S(t)进行FFT变换获取100Hz处的振动幅值F,计算F与原始振动信号的总振动值A的比值M,M=F/A (2)M为高压电机定子故障系数,当M>50%时预报高压电机定子故障;步骤三、提取气隙不均引起的高压电机电磁振动故障特征,定子偏心会在转子和定子间产生一个不均匀的气隙,从而形成一个方向性非常强的振动,选取2倍电源频率100Hz为频带中心频率,频带范围设定为从100-2×电机磁极数×转差频率开始,到100+2×电机磁极数×转差频率结束,将100Hz处的振动峰值与选定频带内的频谱加权值进行运算,设定气隙不均故障因子为G,G=(AG+1/AG+UG+1/UG)/(2AG+2/AG) (3)式(3)中:AG,UG分别为高压电机在100Hz处的振动幅值和选定频带内的振动峰值加权平均值,监测故障因子G,当G>1.2时预报电机气隙不均故障;步骤四、建立高压电机转子导条异常引起的电磁振动分类指标,对于原始振动信号Xi,经频谱分析FFT变换提取1倍频转速频率f、2倍频转速频率2f处的振动幅值分量fi(t),其中:i=1、2,通过ZOOM‑FFT细化分析算法获取f-2Δf和f+2Δf处的振动幅值XL1和XH1,获取2f-2Δf和2f+2Δf处的振动幅值XL2和XH2,其中Δf为转差频率,设定高压电机转子断条系数为J,J=max([(XL1+XH1)/2]/f1,[(XL2+XH2)/2]/f2) (4)式(4)中max表示取括号内两个数之中的较大值,[(XL1+XH1)/2]/f1表示转速频率处两侧边带振动幅值取平均值后除以转速频率处振动幅值,[(XL2+XH2)/2]/f2表示2倍转速频率处两侧边带振动幅值取平均值后除以2倍转速频率处振动幅值,通过式(4)监测高压电机转子有无断条,当J>30%时诊断高压电机转子断条并预报断条故障;步骤五、提取不平衡引起的机械振动故障特征,对于原始振动信号Xi,经FFT变换提取1倍频转速频率、2倍频转速频率处的振动幅值分量fi(t),其中i=1、2,通过反算叠加后重新构成电机本体质量不平衡故障信号Ψ(t),
监测不平衡故障信号Ψ(t)与原始振动信号的总振动值A的比值H,H=ψ(t)/A (6)通过式(6)监测高压电机不平衡故障,当H>30%时表示电机出现质量不平衡故障;步骤六、建立高压电机滚动轴承异常产生的机械振动分类指标,轴承故障表现在不寻常振动级值有冲击,轴承各零部件的特征振动频率与轴承参数的关系为:轴承外圈特征振动频率f0=nfr(1‑dcosα/D)/2 (7)轴承内圈特征振动频率fi=nfr(1+dcosα/D)/2 (8)轴承滚动体振动频率fp=fr(D/d){1‑[d(cosα)/D]2}/2 (9)轴承保持架振动频率fh={fi[1‑d(cosα)/D]±fo[1+d(cosα)/D]}/2 (10)式中:n为滚动体数、fr为内外环相对转速频率、d为滚动体直径、D为节圆直径、α为接触角;选取滚动轴承特征振动频率附近的频带作为监测对象,将滚动轴承特征振动频率处的振动幅值与选定频带内的振动峰值加权平均值进行计算,设定滚动轴承零部件的故障因子分别为Bi,Bo,Bp,Bh,其中:Bi为滚动轴承内圈特征振动频率成分对应的故障因子,Bo为滚动轴承外圈特征振动频率成分对应的故障因子,Bp为滚动轴承滚动体特征频率成分对应的故障因子,Bh为滚动轴承保持架特征频率成分对应的故障因子,Bi=(Afi+1/Afi+Ufi+1/Ufi)/(2Afi+2/Afi) (11)Bo=(Afo+1/Afo+Ufo+1/Ufo)/(2Afo+2/Afo) (12)Bp=(Afp+1/Afp+Ufp+1/Ufp)/(2Afp+2/Afp) (13)Bh=(Afh+1/Afh+Ufh+1/Ufh)/(2Afh+2/Afh) (14)其中Afi,Ufi分别为轴承内圈特征振动频率fi的振动幅值和选定频带内的振动峰值加权平均值;Afo,Ufo分别为轴承外圈特征振动频率fo的振动幅值和选定频带内的振动峰值加权平均值;Afp,Ufp分别为轴承滚动体特征振动频率fp的振动幅值和选定频带内的振动峰值加权平均值;Afh,Ufh分别为轴承保持架特征振动频率fi的振动幅值和选定频带内的振动峰值加权平均值,当Bi≤1时,表示滚动轴承内圈正常,Bi>1时,表示滚动轴承内圈异常;当Bo≤1时,表示滚动轴承外圈正常,Bo>1时,表示滚动轴承外圈异常;当Bp≤1时,表示滚动轴承滚动体正常,Bp>1时,表示滚动轴承滚动体异常;当Bh≤1时,表示滚动轴承保持架正常,Bh>1时,表示滚动轴承保持架异常;步骤七、提取高压电机安装、调整不良引起的机械振动故障特征,对于原始振动信号Xi,经频谱分析FFT变换提取1倍频转速频率、2倍频转速频率、3倍频转速频率和4倍频转速频率处的振动幅值分量Xi(t),其中i=1、2、3、4,通过反算叠加后重新构成高压电机安装、调整不良引起的故障信号,设定安装、调整不良引起的不对中故障系数为P,
监测不对中故障系数P,当P>30%时预报高压电机安装调整不良。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海宝钢工业技术服务有限公司,未经上海宝钢工业技术服务有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410363958.7/,转载请声明来源钻瓜专利网。
- 上一篇:LED灯中的自适应功率平衡
- 下一篇:一种移动终端的交互装置和交互方法