[发明专利]一种基于极值区域和极限学习机的车牌识别方法有效

专利信息
申请号: 201410374155.1 申请日: 2014-07-31
公开(公告)号: CN104134079A 公开(公告)日: 2014-11-05
发明(设计)人: 王坤峰;苟超;王飞跃 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06K9/66 分类号: G06K9/66
代理公司: 中科专利商标代理有限责任公司 11021 代理人: 宋焰琴
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于极值区域和极限学习机的车牌识别方法,该方法包括步骤:对彩色待处理图像进行预处理,对其中的车牌区域进行粗定位,得到多个车牌候选区域;基于车牌候选区域,在彩色待处理图像中提取RGB三个颜色通道的极值区域,通过分类器从中选择符合车牌字符区域几何属性的极值区域,获得车牌字符区域;通过监督学习建立基于极限学习机的单隐层前馈神经网络,提取字符区域的特征向量作为输入,利用神经网络对车牌字符进行自动识别。本发明方法具有速度快、精度高等优点,特别是在复杂交通环境中,能够很好地应对复杂背景、天气变化、光照影响等不利因素。本发明克服了传统车牌识别方法在实时性和鲁棒性方面的不足,具有显著的应用价值。
搜索关键词: 一种 基于 极值 区域 极限 学习机 车牌 识别 方法
【主权项】:
一种基于极值区域和极限学习机的车牌识别方法,其特征在于,该方法包括以下步骤:步骤S1,对彩色待处理图像进行预处理,并对预处理后得到的图像中的车牌区域进行粗定位,得到一系列车牌候选区域;步骤S2,基于所述车牌候选区域,在所述彩色待处理图像中提取得到RGB三个颜色通道的极值区域,并通过分类器从中选择符合车牌字符区域几何属性的极值区域,完成车牌字符分割并实现车牌区域的准确定位;步骤S3,通过监督学习建立基于极限学习机的单隐层前馈神经网络,提取所述车牌区域中字符区域的特征向量作为神经网络的输入,基于极限学习机的单隐层前馈神经网络对车牌字符进行自动识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410374155.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top