[发明专利]一种基于极值区域和极限学习机的车牌识别方法有效
申请号: | 201410374155.1 | 申请日: | 2014-07-31 |
公开(公告)号: | CN104134079A | 公开(公告)日: | 2014-11-05 |
发明(设计)人: | 王坤峰;苟超;王飞跃 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/66 | 分类号: | G06K9/66 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 宋焰琴 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于极值区域和极限学习机的车牌识别方法,该方法包括步骤:对彩色待处理图像进行预处理,对其中的车牌区域进行粗定位,得到多个车牌候选区域;基于车牌候选区域,在彩色待处理图像中提取RGB三个颜色通道的极值区域,通过分类器从中选择符合车牌字符区域几何属性的极值区域,获得车牌字符区域;通过监督学习建立基于极限学习机的单隐层前馈神经网络,提取字符区域的特征向量作为输入,利用神经网络对车牌字符进行自动识别。本发明方法具有速度快、精度高等优点,特别是在复杂交通环境中,能够很好地应对复杂背景、天气变化、光照影响等不利因素。本发明克服了传统车牌识别方法在实时性和鲁棒性方面的不足,具有显著的应用价值。 | ||
搜索关键词: | 一种 基于 极值 区域 极限 学习机 车牌 识别 方法 | ||
【主权项】:
一种基于极值区域和极限学习机的车牌识别方法,其特征在于,该方法包括以下步骤:步骤S1,对彩色待处理图像进行预处理,并对预处理后得到的图像中的车牌区域进行粗定位,得到一系列车牌候选区域;步骤S2,基于所述车牌候选区域,在所述彩色待处理图像中提取得到RGB三个颜色通道的极值区域,并通过分类器从中选择符合车牌字符区域几何属性的极值区域,完成车牌字符分割并实现车牌区域的准确定位;步骤S3,通过监督学习建立基于极限学习机的单隐层前馈神经网络,提取所述车牌区域中字符区域的特征向量作为神经网络的输入,基于极限学习机的单隐层前馈神经网络对车牌字符进行自动识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410374155.1/,转载请声明来源钻瓜专利网。