[发明专利]遥感图像变化检测方法有效

专利信息
申请号: 201410441207.2 申请日: 2014-09-01
公开(公告)号: CN104182985B 公开(公告)日: 2017-02-01
发明(设计)人: 王韵彤;韩冰;张丽霞;柳畅;胡艳艳;宋亚婷;王平;仇文亮 申请(专利权)人: 西安电子科技大学
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 陕西电子工业专利中心61205 代理人: 田文英,王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种遥感图像变化检测方法,其实现步骤为(1)输入变化前后的遥感图像;(2)判断输入图像是否为彩色图像;(3)构造暗原色通道图像;(4)判断彩色遥感图像是否有雾;(5)对有雾彩色遥感图像进行去雾;(6)分割图像;(7)分类识别;(8)变化检测。本发明既可以较好地处理受雾霾影响的遥感图像,又可以分别得到不同类型地物的变化检测图像,具有较广泛的适用范围和较高的检测精度,可应用于地震前后地物变化监测、农作物生长状态的动态监测的技术领域。
搜索关键词: 遥感 图像 变化 检测 方法
【主权项】:
一种遥感图像变化检测方法,包括如下步骤:(1)输入变化前后的遥感图像:输入同一地区,不同时刻获取的两幅变化前后的遥感图像;(2)判断输入的遥感图像是否为彩色遥感图像,若是,执行步骤(3),否则,将输入的遥感图像作为去雾后的遥感图像,执行步骤(6);(3)构造暗原色通道图像:(3a)选取彩色遥感图像的某一个像素点,从红色R、绿色G、蓝色B三个颜色通道中,选取其中亮度值最小的颜色通道,将该颜色通道的亮度值作为该像素点的灰度值;(3b)重复步骤(3a),直至处理完彩色遥感图像中的全部像素点,得到所有像素点的灰度值,将所有像素点的灰度值构成一幅最暗灰度图像;(3c)以最暗灰度图像中的某一像素点为中心像素点,选取一个大小为N1×N1个像素的正方形窗口,其中N1的取值范围为{7,9,11,13,15};(3d)将正方形窗口中全部像素点的灰度值,按照由小到大的顺序排列,组成一个灰度序列,选取灰度序列中最小的灰度值作为滤波值,用该滤波值替代步骤(3c)中的中心像素点的灰度值;(3e)重复步骤(3c)和步骤(3d),直至处理完最暗灰度图像中的全部像素点,得到一幅暗原色通道图像;(3f)对暗原色通道图像,按照下式,计算暗像素概率:P=ΔXM×N]]>其中,P表示暗原色通道图像的暗像素概率,P的取值范围为[0,1],表示将等式左边的暗像素概率P定义为等式右边公式的操作,X表示暗原色通道图像中灰度值小于等于灰度阈值D的像素点个数,灰度阈值D的取值范围为{25,26,27…,35},X的取值范围为{0,1,2…,M×N},M、N分别表示暗原色通道图像矩阵的行数和列数;(4)判断彩色遥感图像是否有雾,若彩色遥感图像的暗像素概率P小于先验阈值T1,则认为该彩色遥感图像为有雾彩色遥感图像,执行步骤(5);否则,将彩色遥感图像作为去雾后的遥感图像,执行步骤(6),其中,T1表示先验阈值,T1的取值范围为{0.75,0.8,0.85,0.9,0.95};(5)对有雾彩色遥感图像进行去雾:(5a)将有雾彩色遥感图像对应的暗原色通道图像中的所有像素点,按其灰度值由大到小排列,得到像素点序列,从像素点序列中灰度值最大的像素点开始,依次提取占该序列0.1%比例的像素点,记录所提取像素点在暗原色通道图像中的坐标;(5b)从有雾彩色遥感图像中,提取所记录坐标上的像素点,得到像素点集合O;(5c)将像素点集合O中所有像素点的红色R、绿色G、蓝色B三个颜色通道中的亮度值,由大到小进行排列,得到亮度值序列,从该亮度值序列中选取最大的亮度值作为全局大气光;(5d)选取暗原色通道图像中的某一个像素点,按照下式,计算所选取像素点在彩色遥感图像的透射率图中对应的像素点的灰度值:t(x,y)=1-0.95×E1(x,y)A]]>其中,t(x,y)表示所选取像素点在彩色遥感图像的透射率图中对应的像素点的灰度值,t(x,y)取值范围为[0,1],(x,y)表示所选取像素点在彩色遥感图像的透射率图中对应的像素点的坐标,E1(x,y)表示暗原色通道图像中所选取像素点的灰度值,E1(x,y)的取值范围为{0,1,2…,255},(x,y)表示所选取像素点在暗原色通道图像中的坐标,x的取值范围为{0,1,2…,M‑1},y的取值范围为{0,1,2…,N‑1},A表示全局大气光;(5e)重复步骤(5d),直至处理完暗原色通道图像中的所有像素点,得到暗原色通道图像中所有像素点在彩色遥感图像的透射率图中对应像素点的灰度值,将彩色遥感图像的透射率图中对应像素点的灰度值构成透射率图;(5f)按照下式,计算彩色遥感图像去雾后的无雾图像,得到去雾后的遥感图像:L=F-A(H-t)t]]>其中,L表示去雾后的遥感图像,F表示彩色遥感图像,A表示全局大气光,t表示彩色遥感图像的透射率图,H表示一个大小为M×N的全1矩阵,M、N分别表示彩色遥感图像矩阵的行数和列数;(6)利用模糊C均值FCM聚类算法,对去雾后的遥感图像进行分割,得到分割后各类地物的遥感图像;(7)利用K近邻KNN算法,对分割后各类地物的遥感图像进行分类识别,获得分类识别后的遥感图像;(8)利用作差法,对分类识别后的遥感图像进行变化检测,获得所有地物种类的变化检测图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410441207.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top