[发明专利]基于约束极速学习机的脑电信号分类方法在审
申请号: | 201410529244.9 | 申请日: | 2014-10-10 |
公开(公告)号: | CN104361345A | 公开(公告)日: | 2015-02-18 |
发明(设计)人: | 段立娟;续艳慧;苗军;马伟;杨震;葛卉 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于约束极速学习机的脑电信号分类方法,包括采用固定的滑动时间窗将原始运动想象脑电信号平均分为S段子信号;对每一段子信号通过主成分分析方法进行降维;对降维后的特征向量通过线性判别分析方法再次降维,对于K种类别的脑电数据,得到K-1维的特征向量;对每一段子信号进行处理,得到S个K-1维的特征向量,组合后得到S*(K-1)维的特征;将S*(K-1)维特征送入约束极速学习机(CELM)进行分类。本发明应用CELM通过改变输入层节点与隐层节点之间的权重的选取方式,限制权重参数的随机性,从而既能提高运动想象脑电信号的分类准确率,又能保持ELM训练速度快的优势。 | ||
搜索关键词: | 基于 约束 学习机 电信号 分类 方法 | ||
【主权项】:
基于约束极速学习机的脑电信号分类方法,包括:步骤1,对脑电信号进行特征提取,得到脑电信号的特征;处理对象为一组训练数据集TrainData和一组测试数据集TestData,TrainData的样本量为N,维度为D;TestData的样本量为M,维度同样为D;其中TrainData与TestData中样本属于K个类别;步骤1.1,采用固定时间窗把TrainData和TestData均分成S段脑电子信号;TrainDatai代表训练数据集中第i段子信号,每段子信号的维度为Di,i=1,2,…,S;TestDatai代表测试数据集中第i段子信号,每段子信号的维度为Di,i=1,2,…,S,D1=D2=…=Di=W;步骤1.2,对步骤1.1所得到的每一段子信号TrainDatai和TestDatai通过主成分分析方法进行降维;将特征值从大到小进行排序后,再根据累计贡献率,只保留前m个最大特征值对应的特征向量组合MPCA=[Φ1,Φ2,...,Φm]作为投影空间向量;将TrainDatai和TestDatai同时投影到MPCA上,可得到PCA降维后的训练数据Traini和测试数据Testi;步骤1.3,对步骤1.2中得到的特征向量通过线性判别分析LDA方法进行二次降维:根据LDA准则,利用Traini中不同类别样本的类间离散度矩阵以及同一类别样本的类内离散度矩阵计算出LDA的投影空间向量w*;把Traini与Testi投影到w*上,得到第i段脑电子信号的特征:TrainFeaturei=Traini·w*TestFeaturei=Testi·w*步骤1.4,对每一段子信号均按照步骤1.2和步骤1.3进行处理,计算出所有的TrainFeaturei与TestFeaturei,进行组合后得到最终的特征TrainFeature与TestFeature:TrainFeature={TrainFeature1,TrainFeature2,…,TrainFeaturex}TestFeature={TestFeature1,TestFeature2,…,TestFeaturex}其特征在于还包括:步骤2,用所述步骤1.4得到的特征TrainFeature训练约束极速学习机分类器模型,将TestFeature送入训练好的模型进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410529244.9/,转载请声明来源钻瓜专利网。