[发明专利]一种整合特征字典结构与视觉特征编码的图像分类方法在审
申请号: | 201410693888.1 | 申请日: | 2014-11-26 |
公开(公告)号: | CN104331717A | 公开(公告)日: | 2015-02-04 |
发明(设计)人: | 杨育彬;朱启海 | 申请(专利权)人: | 南京大学 |
主分类号: | G06K9/66 | 分类号: | G06K9/66 |
代理公司: | 江苏圣典律师事务所 32237 | 代理人: | 胡建华 |
地址: | 210023 江苏省南*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种整合特征字典结构与视觉特征编码的图像分类方法,包含如下步骤:视觉特征提取;特征字典学习;视觉特征编码;特征编码的空间汇合;训练与分类。本发明能获取更为准确的图像特征表示,提升图像分类的准确率。此外,通过将特征字典中的结构信息整合到视觉特征编码过程,得到更有判别性的图像特征表示,因此使得对图像的分类更加有效。本发明实现了高效、准确的图像分类,因此具有较高的使用价值。 | ||
搜索关键词: | 一种 整合 特征 字典 结构 视觉 编码 图像 分类 方法 | ||
【主权项】:
一种整合特征字典结构与视觉特征编码的图像分类方法,其特征在于,包括如下步骤:步骤1,提取图像的视觉特征:对每幅图像进行局部采样,得到一组区域块,提取每块区域的视觉特征,得到每幅图像对应的视觉特征集合,称所有图像的视觉特征集合的整体为所有图像的视觉特征集,记为集合X;步骤2,特征字典学习:以集合X为输入,使用特征字典学习方法,得到由一组具有代表性的视觉单词组成的特征字典;步骤3,视觉特征编码:将每幅图像的每个视觉特征表示成视觉单词的线性组合,每个视觉单词对应一个系数,称这组系数为视觉特征的编码;步骤4,视觉特征编码的空间汇合:以每幅图像的所有视觉特征的编码为输入,使用统计方法,将每幅图像表示为一个向量,该向量就是对应图像的图像特征表示;步骤5,将步骤4得到的每幅图像的编码作为输入,使用分类模型进行训练和分类,得到分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410693888.1/,转载请声明来源钻瓜专利网。
- 上一篇:不形成毛刺的激光钻孔
- 下一篇:多脉冲激光烧蚀金属覆层定量去除方法