[发明专利]基于图像智能分析的山火检测方法在审
申请号: | 201410853102.8 | 申请日: | 2014-12-31 |
公开(公告)号: | CN104573719A | 公开(公告)日: | 2015-04-29 |
发明(设计)人: | 姚楠;罗旺;郭雅娟;洪功义;张天兵 | 申请(专利权)人: | 国家电网公司;江苏省电力公司;江苏省电力公司电力科学研究院;南京南瑞信息通信科技有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/00 |
代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
地址: | 211103 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于图像智能分析的山火检测方法,包括训练阶段和测试阶段,用SLIC的方法得到图像的超像素,该方法能够快速的将图像的像素进行聚类,且能很好地拟合目标的边缘,得到超像素块之后,提出其颜色和纹理特征,根据这些特征对图像进行山火的分类。本发明提出的基于纹理和颜色的火灾检测方法能够快速有效地检测山火的位置,且能达到一个较精确的分类结果。该方法使用的SLIC生成的超像素能够很好地吻合目标的边缘,且分割效果较为理想。用来描述超像素区域的特征简单有效,复杂度低,能够满足山火检测的实时性要求。 | ||
搜索关键词: | 基于 图像 智能 分析 山火 检测 方法 | ||
【主权项】:
一种基于图像智能分析的山火检测方法,其特征是,包括以下步骤:(1)训练阶段,该阶段分为以下三个步骤:步骤一、构建数据库:从网上搜集关于山火的图片,用手工标注的方法标定山火的位置,并标注每张图片的类别;步骤二、SLIC得到超像素:给定一张训练图片,用SLIC的方法提取图像的超像素,针对每个超像素块,找到其中标定为山火的像素的个数,如果其与超像素块总数的比例大于0.7,则将该超像素块设定为山火的正样本,否则,设定为山火的负样本;步骤三、训练颜色特征的聚类中心:针对每一张训练图片,提取每一个像素的颜色特征,如公式(1):Fc=[r,g,b1,r‑g,g‑b1,l,a,b2] (1)其中,r代表RGB颜色空间中红色通道,g代表RGB颜色空间中绿色通道,b1代表RGB颜色空间中蓝色通道,r‑g代表RGB颜色空间中红色通道与绿色通道的差值,g‑b1代表RGB颜色空间中绿色通道与蓝色通道的差值,l代表亮度,a代表在红色和绿色之间的位置,b2代表在黄色和蓝色之间的位置,从训练图片的所有像素的颜色特征中随机选取多个颜色特征,用KMEANS方法进行聚类;步骤四、训练纹理特征的聚类中心:针对每一张训练图片,将图片分为4*4的块,每个块的间隔设为4个像素,从每个小块中提取纹理特征,从训练图片的所有小块对应的纹理特征中随机选取多个特征,用KMEANS方法进行聚类;步骤五、得到颜色特征的直方图:给定一张训练图片,首先用SLIC的方法将图片分为多个超像素,每个超像素的每个像素提取步骤三的颜色特征,针对每个颜色特征,用步骤三训练的颜色特征聚类中心找到与之最接近的颜色聚类中心,用此颜色聚类中心代表该颜色特征,统计所有颜色聚类中心在该超像素出现的次数,得到颜色特征的直方图;步骤六、得到纹理特征的直方图:给定一张训练图片,得到SLIC生成的超像素,将每个超像素分为4*4的小块,每个块的间隔设为4个像素,从每个小块中提取纹理特征,用步骤四训练的纹理特征聚类中心找到与该纹理特征最靠近的纹理聚类中心,用此纹理聚类中心代表该纹理特征,统计所有纹理聚类中心在该超像素出现的次数,得到纹理特征的直方图;步骤七、训练RBF核的SVM:将步骤五生成的颜色特征直方图与步骤六生成的纹理特征直方图串联起来,作为超像素的特征,给定山火的正样本和负样本,对每一个样本对应的超像素,提取其颜色和纹理特征,训练RBF核的SVM训练器,如公式(2):![]()
其中,x为超像素块串联起来的颜色和纹理直方图,n代表的是训练样本的总数,y代表的是样本的类别,a和b均为常数,K代表的是核函数;(2)测试阶段,该阶段分为以下三个步骤:步骤一、SLIC得到超像素:给定一张测试图片,首先用SLIC的方法生成多个超像素,将SLIC的规范化阈值设定为0.01,使得超像素的边缘吻合目标的边缘;步骤二、得到颜色聚类中心的直方图:针对每个超像素,提取每个像素的颜色特征,用训练阶段中步骤三训练的颜色聚类中心找到与该颜色特征最接近的颜色聚类中心,用此聚类中心表示该颜色特征,统计超像素区域内所有颜色聚类中心出现的次数,得到颜色聚类中心的直方图;步骤三、得到纹理聚类中心的直方图:给定一个超像素区域,将超像素分为4*4的规范化小块,每个小块的间距为4个像素,从每个小块提取纹理特征,从训练步骤四训练得到的纹理聚类中心找到与该纹理特征最靠近的纹理聚类中心,用此聚类中心表示该纹理特征,统计超像素区域内所有纹理聚类中心出现的次数,得到纹理聚类中心的直方图;步骤四、用训练的RBF核的SVM分类器对特征分类:将步骤二和步骤三的直方图串联起来表示超像素区域的特征,用训练的RBF核的SVM分类器对该特征进行分类,得到超像素属于山火的概率;步骤五、对山火待定区域后处理:将概率小于0.3的区域设定为非山火确定区域,将概率大于0.7的区域设定为山火确定区域,其余部分为山火待定区域,针对分为山火待定区域的每个超像素块,统计其周围分为山火确定区域和非山火确定区域的超像素的个数,若山火确定区域超像素个数大于非山火确定区域超像素的个数,则将该山火待定区域分为山火确定区域。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家电网公司;江苏省电力公司;江苏省电力公司电力科学研究院;南京南瑞信息通信科技有限公司,未经国家电网公司;江苏省电力公司;江苏省电力公司电力科学研究院;南京南瑞信息通信科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410853102.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序