[发明专利]一种基于双阶遗传计算的基因表达数据的双聚类方法有效

专利信息
申请号: 201510008985.7 申请日: 2015-01-06
公开(公告)号: CN104573004B 公开(公告)日: 2017-11-07
发明(设计)人: 黄庆华;杨杰;黄仙海 申请(专利权)人: 华南理工大学
主分类号: G06F17/30 分类号: G06F17/30;G06F19/20
代理公司: 广州市华学知识产权代理有限公司44245 代理人: 罗观祥
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于双阶遗传计算的基因表达数据的双聚类方法,将矩阵M中的每一列减去第k列得到矩阵M(k),k=1,2,…,n;对M(k)的每一列进行层次聚类,得到双聚类种子的集合;通过遗传计算获得对应的双聚类。本发明所述的算法,可解决传统基于遗传计算的双聚类算法只能针对双聚类进行选择的缺点,通过同时对行列进行优化,可提高搜索效率,并获得更优的双聚类分析效果。
搜索关键词: 一种 基于 遗传 计算 基因 表达 数据 双聚类 算法
【主权项】:
一种基于双阶遗传计算的基因表达数据的双聚类方法,其特征在于,包含以下顺序的步骤:1)设基因表达数据矩阵为M,行数为m,列数为n,即基因表达数据矩阵的大小为m×n,将原始的数据矩阵M的每一行减去第k行,得到处理之后的矩阵M(k),k=1,2,…,n;2)对处理之后的矩阵M(k)中除了第k列之外的每一列,使用距离阈值为cof的层次聚类,得到每一列的双聚类种子,然后将所有得到的双聚类种子全部放入一个名为Bic_Set的集合;3)从Bic_Set的集合中选取一个双聚类种子,对未包含其中的行列进行编码;设遗传算法的迭代次数为ui,其中i=1,2,…,t;将未包含的行列作为搜索空间,每个行和列作为一个个体,随机选择Ni行和Nj列,令N1=Ni+Nj,即随机选择N1个个体,构成了初始化的种群P1(u1);将选中的行和列的位置记为1,没有选中的行和列的位置记为0,则得到初始化的种群P1(u1)的编码;4)将初始化的种群P1(u1)的N1个个体分别独立的加进双聚类种子中,得到N2个已扩大的双聚类,其中N1=N2,每个双聚类作为一个个体,由N2个个体构成初始化的种群P2(u1),然后对每个双聚类进行二进制编码,编码的长度为m+n,前m位用于行编码,后n位用于列编码,将双聚类中包含的行和列对应的位置置为1;经过以上步骤就得到初始化的种群P2(u1)中双聚类的编码;至此,得到了初始化的种群P1(u1)和初始化的种群P2(u1);5)接着使用适应度函数Fitness1(p)评价初始化的种群P1(u1)中每个个体的适应度,设变异概率为β;从N1个个体中选择(1‑β)×N1个适应度高的个体,将其遗传到下一代种群中,然后将β×N1个适应度低的个体进行变异,得到新的β×N1个体,即重新随机选取β×N1个新的行或者列;然后将变异得到的新的个体也加入下一代种群中,由此得到种群P1(u2)中新的N1个个体,其中适应度函数为Fitness1(p)=Bicluster.Msr‑Bicluster.Msr(p),Bicluster.Msr是种群P1中第p个个体对应产生的种群p2中的双聚类的平均平方残基,Bicluster.Msr(p)是去掉第p行或者第p列之后的双聚类的平均平方残基;至此,新一代的种群P1(u2)的遗传进化完成;6)然后使用适应度函数Fitness2(Bicluster)评价种群P2(u1)中的N2个个体的适应度,从中选取适应度高的g个个体遗传到下一代,将种群P2(u1)中其余的适应度低的个体淘汰,其中g<N2;其中适应度函数为Fitness2(Bicluster)=Bicluster.HscoreBicluster.Volume,]]>式中,Bicluster.Hscore是双聚类的平均平方残基,Bicluster.Volume是双聚类的大小;7)然后将下一代种群P1(u2)的N1个体随机的加入到由步骤6)中由种群P2(u1)得到的适应度高的g个个体中,即将种群P1中的每个个体所对应的行和列分别独立地加入g个双聚类中,得到N2个包含较优且已扩大的双聚类个体的下一代种群P2(u2);8)之后继续对种群P1(ui)使用遗传算法,产生下一代种群P1(ui+1)中的个体,将新一代的种群P1(ui+1)的N1个个体随机的加入到由种群P2(ui)得到的适应度高的g个个体中,又产生了新一代种群P2(ui+1);不断重复步骤5)、6)、7),直到达到预先设定的最大的进化次数,最后从种群P2中挑选出最优的双聚类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510008985.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top