[发明专利]基于遗传算法优化支持向量机的肌电信号步态识别方法在审

专利信息
申请号: 201510014792.2 申请日: 2015-01-12
公开(公告)号: CN104537382A 公开(公告)日: 2015-04-22
发明(设计)人: 高发荣;郑潇;许敏华;甘海涛;罗志增 申请(专利权)人: 杭州电子科技大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 杜军
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于遗传算法优化支持向量机的下肢肌电信号步态识别方法。本发明通过遗传算法,对支持向量机的惩罚参数和核函数参数进行优化,从而优化支持向量机性能,提高支持向量机对基于肌电信号的下肢运动步态识别效率和准确率。首先,采用小波模极大值去噪方法对采集的下肢肌电信号进行消噪处理;其次,提取消噪后肌电信号的时域特征,形成特征样本;再次,利用遗传算法优化支持向量机参数,得到误差最小的一组最优参数,并利用此参数构造分类器;最后,把特征样本集输入优化后的分类器进行步态识别。本发明操作简单,计算快速,识别率高,在人体下肢运动步态识别领域具有应用价值和广阔前景。
搜索关键词: 基于 遗传 算法 优化 支持 向量 电信号 步态 识别 方法
【主权项】:
基于遗传算法优化支持向量机的肌电信号步态识别方法,其特征在于,该方法具体包括以下步骤:步骤(1),下肢运动肌电信息获取;步骤(2),提取消噪后肌电信号特征向量样本集;步骤(3),通过GA对SVM进行参数优化,得到最优SVM分类器,实现下肢肌电信号的步态分类与识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510014792.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top